Известия Саратовского университета. Новая серия.

Серия Математика. Механика. Информатика

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Для цитирования:

Шарапудинов И. И. Приближение гладких функций в Lp(x)2π средними Валле-Пуссена // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2013. Т. 13, вып. 1, ч. 1. С. 45-49. DOI: 10.18500/1816-9791-2013-13-1-1-45-49, EDN: SMXXIP

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
15.02.2013
Полный текст:
(downloads: 184)
Язык публикации: 
русский
Рубрика: 
УДК: 
517.587
EDN: 
SMXXIP

Приближение гладких функций в Lp(x)2π средними Валле-Пуссена

Автор:
Импортов Импорт Импортович
Авторы: 
Шарапудинов Идрис Идрисович, Дагестанский научный центр РАН
Аннотация: 

Рассматривается пространство Лебега Lp(x)2π с переменным показателем p(x), состоящее из измеримых функций f(x), для которых существует интеграл ∫2π0 |f(x)|p(x)dx. Для f ∈ Lp(x)2π cредние Валле–Пуссена Vnm(f, x) определим так Vnm(f, x) = 1/(m+1)Ʃl=0mSn+l(f, x), где Sk(f, x) – частичная сумма Фурье функции f(x) порядка k. Исследованы аппроксимативные свойства операторов Vnm(f) = Vnm(f, x) в метрике пространства Lp(x)2π. В случае, когда 2π-периодический переменный показатель p(x) ≥ 1 удовлетворяет условию Дини–Липшица, доказано, что при m = n − 1 и m = n имеет место оценка ||f − Vnm(f)||p(·) ≤ (cr(p)/nr )En(f(r))p(·) где En(f(r))p(·)  – наилучшее приближение функции f(r)(x) тригонометрическими полиномами порядка n в метрике пространства Lp(x)2π.

Список источников: 
  1. Шарапудинов И. И. О топологии пространства Lp(x)([0, 1]) // Мат. заметки. 1979. Т. 26, вып. 4. С. 613–632. [Sharapudinov I. I. Topology of the space Lp(x)([0, 1]) // Math. Notes. 1979. Vol. 26, № 4. P. 796—806.]
  2. Шарапудинов И. И. О базисности системы Хаара в пространстве Lp(x)([0, 1]) и принципе локализации в среднем // Мат. сб. 1986. T. 130(172), № 2(6). С. 275–283. [Sharapudinov I. I. On the basis property of the Haar system in the space Lp(x)([0, 1]) and the principle of localization in the mean // Math. USSR Sb. 1987. Vol. 58, № 1. P. 279–287.]
  3. Шарапудинов И. И. О равномерной ограниченности в Lp (p = p(x)) некоторых семейств операторов свертки // Мат. заметки.1996. Т. 59, вып. 2. С. 291–302. [Sharapudinov I. I.. Uniform boundedness in L(p = p(x)) of some families of convolution operators // Math. Notes. 1996. Vol. 59, № 2. P. 205–212.]
  4. Шарапудинов И. И. Некоторые вопросы теории приближения в пространствах Lp(x) // Analysis Math. 2007. Vol. 33, № 2. P. 135–153. [Sharapudinov I. I. Some problems of approximation theory in spaces Lp(x) // Analysis Math. 2007. Vol. 33, № 2. P. 135–153.]
  5. Шарапудинов И. И. О базисности системы полиномов Лежандра в пространстве Lp(x)(−1, 1) переменным показателем p(x)// Мат. сб. 2009. Т. 200, № 1. С. 137–160. [Sharapudinov I. I. The basis property of the Legendre polynomials in the variable exponent Lebesgue space Lp(x)(−1, 1) // Sb. Math. 2009. Vol. 200, № 1. P. 133—156.]
  6. Guven A., Israfilov D. M. Trigonometric approximation in Generalized Lebesgue spaces Lp(x) // J. of Math. Inequalities. 2010. Vol. 4, № 2. P. 285–299.
  7. Akgün R. Polynomial approximation of function in weigted Lebesgue and Smirnov spaces with nonstandard growth // Georgian Math.J. 2011. Vol. 18. P. 203–235.
  8. Akgün R. Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent // Ukrainian Math. J. 2011. Vol. 63, № 1. P. 3–23.
  9. Akgün R., Kokilashvili V. On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces // Banach J. Math. Anal. 2011. Vol. 5, № 1. P. 70–82.
  10. Шарапудинов И. И. Некоторые вопросы теории приближения функций тригонометрическими полиномами в Lp(x) // Математический форум (Итоги науки. Юг России). 2011. Т. 5. С. 108–117. [Sharapudinov I. I. Some problems in approximation theory by trigonometric polynomials in Lp(x) // Math. Forum (Itogi nauki. The South of Russia). 2011. Vol. 5. P. 108–117.]
Поступила в редакцию: 
20.08.2012
Принята к публикации: 
12.01.2013
Опубликована: 
15.02.2013