обратные спектральные задачи

О ВОССТАНОВЛЕНИИ ИНТЕГРОДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ ПО ФУНКЦИИ ВЕЙЛЯ

Исследуются обратные спектральные задачи для интегродифференциальных операторов второго порядка, которые являются возмущением оператора Штурма–Лиувилля интегральным вольтерровским оператором. Основное внимание уделяется нелинейной обратной задаче восстановления потенциала по заданной функции Вейля при условии,что ядро интегрального оператора известно априори.Получены свойства спектральных характеристик и функции Вейля, приведен алгоритм решения обратной задачи и установлена единственность решения. Для решения обратной задачи используется метод эталонных моделей.

ОБРАТНАЯ ЗАДАЧА СПЕКТРАЛЬНОГО АНАЛИЗА ДЛЯ МАТРИЧНОГО УРАВНЕНИЯ ШТУРМА – ЛИУВИЛЛЯ

Исследуется обратная спектральная задача для матричного уравнения Штурма – Лиувилля на конечном интервале. Приведены свойства спектральных характеристик, получена конструктивная процедура решения обратной задачи и необходимые и достаточные условия ее разрешимости.

 

ЕДИНСТВЕННОСТЬ РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ НА ПРОИЗВОЛЬНЫХ КОМПАКТНЫХ ГРАФАХ

Исследуется обратная спектральная задача для операторов Штурма – Лиувилля на произвольных компактных графах со стандартными условиями склейки во внутренних вершинах. Доказана теорема единственности восстановления потенциалов по спектрам.

ВОССТАНОВЛЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ НА ГРАФЕ-КУСТЕ

Исследуется обратная спектральная задача для операторов Штурма – Лиувилля на произвольном графе с циклом. Приведена конструктивная процедура решения и установлена его единственность.

О ВОССТАНОВЛЕНИИ ДИФФЕРЕНЦИАЛЬНЫХ ПУЧКОВ НА ГРАФЕ-КУСТЕ

Исследуется обратная задача спектрального анализа для дифференциальных пучков второго порядка на графе-кусте, который является произвольным компактным графом с одним циклом. Основное внимание уделяется наиболее важной нелинейной обратной задаче восстановления коэффициентов дифференциальных уравнений при условии, что структура графа известна априори. Используются стандартные условия склейки во внутренних вершинах и краевые условия Дирихле и Неймана в граничных вершинах.

ОБ ОБРАТНОЙ ПЕРИОДИЧЕСКОЙ ЗАДАЧЕ ДЛЯ ЦЕНТРАЛЬНО-СИММЕТРИЧНЫХ ПОТЕНЦИАЛОВ

Исследуется обратная спектральная задача для операторов Штурма–Лиувилля на конечном интервале с периодическими краевыми условиями в центрально-симметричном случае, когда потенциал симметричен относительно середины интервала. Обсуждается постановка обратной задачи, приводится алгоритм ее решения, а также необходимые и достаточные условия разрешимости этой нелинейной обратной задачи.

ЕДИНСТВЕННОСТЬ РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ РАССЕЯНИЯ ДЛЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРЕМЕННОГО ПОРЯДКА НА ПРОСТЕЙШЕМ НЕКОМПАКТНОМ ГРАФЕ С ЦИКЛОМ

Исследуется обратная задача рассеяния для дифференциальных операторов переменных порядков на простейшем некомпактном графе с циклом. Приведена теорема единственности восстановления коэффициентов операторов по данным рассеяния.

Единственность восстановления дифференциальных операторов произвольных порядков на некомпактных пространственных сетях

 Исследуется обратная спектральная задача для дифференциальных операторов произвольных порядков на некомпактных графах. Доказана теорема единственности восстановления потенциалов по матрицам Вейля.