Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Smotritski K. A., Dirvuk Y. V. About the Norms of Interpolation Processes with Fixed Nodes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, vol. 14, iss. 4, pp. 590-595. DOI: 10.18500/1816-9791-2014-14-4-590-595, EDN: TBDAJR

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
01.12.2014
Full text:
(downloads: 207)
Language: 
Russian
Heading: 
UDC: 
513.51
EDN: 
TBDAJR

About the Norms of Interpolation Processes with Fixed Nodes

Autors: 
Smotritski K. A., Yanka Kupala State University of Grodno, Belarus
Dirvuk Y. V., Yanka Kupala State University of Grodno, Belarus
Abstract: 

The object of study is interpolating rational Lagrange functions. The aim of the research — the study of approximation properties of these functions in the space of square integrated functions. In the introduction the relevance of the research is indicated, references to some works related to this article are given. We also describe the construction of the apparatus of approximation — interpolating rational Lagrange functions. In the main part the norm of the interpolating rational function in the space of the square integrated functions is calculated. This enabled us to estimate the error of the approximation of an arbitrary function by interpolating rational Lagrange functions in the space of square integrated functions in terms of best uniform rational approximation of this function. The results can be used for further investigation of the properties of interpolating rational functions and their approximations in various functional spaces.

References: 
  1.  Ровба Е. А., Смотрицкий К. А. Рациональное интерполирование в нулях синус-дробей Чебышева—Маркова // Докл. НАН Беларуси. 2008. Т. 52, № 5. С. 11–15.
  2.  Ровба Е. А., Смотрицкий К. А. Cходимость в среднем интерполяционных рациональных процессов в нулях дробей Бернштейна // Весцi НАН Беларусi. 2010. № 3. С. 5–9.
  3.  Ровба Е. А. Об одной ортогональной системе рациональных функций и квадратурах типа Гаусса // Весцi НАН Беларусi. Сер. фiз.-матем. навук. 1998. № 3. С. 31–35.
  4. Русак В. Н. Рациональные функции как аппарат приближения. Минск : Изд-во БГУ им. В. И. Ленина, 1979. 176 с.
Received: 
04.06.2014
Accepted: 
29.10.2014
Published: 
01.12.2014