For citation:
Galaev S. V. Admissible Hypercomplex Structures on Distributions of Sasakian Manifolds. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 3, pp. 263-272. DOI: 10.18500/1816-9791-2016-16-3-263-272, EDN: WMIIFT
Admissible Hypercomplex Structures on Distributions of Sasakian Manifolds
The notions of admissible (almost) hypercomplex structure and almost contact hyper-Kahlerian structure are introduced. On a ¨ manifold M with an almost contact metric structure (M, ~ξ, η, ϕ, D) an interior symmetric connection ∇ is defined. In the case of a contact manifold of dimension bigger than or equal to five, it is proved that the curvature tensor of the connection ∇ is zero if and only if there exist adapted coordinate charts with respect to that the coefficients of the interior connection are zero. On the distribution D of an almost contact structure as on the total space of the vector bundle (D, π, M), an admissible almost hypercomplex structure (D, J, J ˜ 1, J2,~u, λ = η ◦ π∗, D) is defined. Under the condition that the admissible almost complex structure ϕ is integrable, it is proved that the constructed almost hypercomplex structure is integrable if and only if the distribution D is a distribution of zero curvature. In the case of a Sasakian structure (M, ~ξ, η, ϕ, g, D), the conditions that imply that the admissible hypercomplex structure (D, J, J ˜ 1, J2,~u, λ = η ◦ π∗, g, D˜ ) is an almost contact hyper-Kahlerian structure.
- Sasaki S. On the differential geometry of tangent bundles of Riemannian manifolds // Tohoku Math. J. 1958. Vol. 10. P. 338–354.
- Dombrowski P. On the geometry of the tangent bundle // J. Reine Angew. Math. 1962. Vol. 210. P. 73–88.
- Munteanu M. I. Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold // Mediterr. J. Math. 2008. Vol. 5. P. 43–59.
- Kowalski O. Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold // J. Reine Angew. Math. 1971. Vol. 250. P. 124–129.
- Musso E., Tricerri F. Riemannian metrics on tangent bundles // Ann. Mat. Pura Appl. 1988. Vol. 150, iss. 4. P. 1–19.
- Galaev S. V. The intrinsic geometry of almost contact metric manifolds. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2012, vol. 12, iss. 1, pp. 16–22 (in Russian).
- Galaev S. V. Almost contact Ka?hlerian manifolds of constant holomorphic sectional curvature. Russian Math., 2014, iss. 8, pp. 42–52.
- Galaev S. V. Almost contact metric spaces with Nconnection. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2015, vol. 15, iss. 3, pp. 258–264. DOI: https://doi.org/10.18500/1816-9791-2015-15-3-258-264.
- Galaev S. V. Almost contact metric structures defined by an N-prolonged connection. Yakutian Math. J., 2015, iss. 1, pp. 25–34 (in Russian).
- Obata M. Affine connections on manifolds with almost complex, quaternion or Hermitian structure // Jap. J. Math. 1956. Vol. 26. P. 43–77.
- Obata M. Affine connections in a quaternion manifold and transformations preserving the structure // J. Math. Soc. Japan. 1957. Vol. 9. P. 406–416.
- Bogdanovich S. A., Ermolitski A. A. On almost hyperHermitian structures on Riemannian manifolds and tangent bundles // Cent. Eur. J. Math. 2004. Vol. 2, iss. 5. P. 615–623.
- Oproiu V. Hyper-Kahler structures on the tangent ¨ bundle of a Kahler manifold // Balkan J. Geom. ¨ Appl. 2010. Vol. 15, iss. 1. P. 104–119.
- Vagner V. V. The geometry of an (n − 1)-dimensional nonholonomic manifold in an n-dimensional space. Trudy Sem. Vektor. Tenzor. Analiza, Moscow, Moscow Univ. Press, 1941, iss. 5, pp. 173–255 (in Russian).
- Bejancu A. Kahler contact distributions // J. Geometry and Physics. 2010. Vol. 60. P. 1958–1967.
- Schouten J., van Kampen E. Zur Einbettungsund Krummungstheorie nichtholonomer Gebilde // ¨ Math. Ann. 1930. Vol. 103. P. 752–783.
- Bukusheva A. V. The geometry of the contact metric spaces ϕ-connection. Belgorod State University Scientific Bulletin. Mathematics & Physics, 2015, no 17 (214), iss. 40, pp. 20–24 (in Russian).
- 1188 reads