Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Ardazishvili R. V., Wilde M. V., Kossovich L. Y. Antisymmetric Higher Order Edge Waves in Plates. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 1, pp. 50-56. DOI: 10.18500/1816-9791-2013-13-1-1-50-56

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 66)

Antisymmetric Higher Order Edge Waves in Plates

Ardazishvili Roman Vyacheslavovich, Saratov State University
Wilde Maria Vladimirovna, Saratov State University
Kossovich Leonid Yurevich, Saratov State University

This paper is concerned with the propagation of surface waves localized near the edge of plate (edge waves). Antisymmetric waves in a plate subject to traction free boundary conditions are considered. To study higher order edge waves three-dimensional equations of theory of elasticity are used. Asymptotic analysis is performed, which shows that there are an infinite spectrum of higher order edge waves. For the large values of wave number asymptotics of phase velocities are obtained. It is demonstrated that in the short-wave limit the phase velocities of all higher order edge waves tend to the velocities of Rayleigh wave, while the damping ratios tend to zero. Numerical results for first four higher order edge waves are presented in a wide frequency range.

  1. Белубекян М. В. Поверхностные волны в упругих средах // Проблемы механики деформируемого твердого тела / Институт механики НАН Армении. Ереван, 1997. С. 79–96. [Belubekyan M. V. Surface waves in elastic media // Problems of Mechanics of Deformed Solids / Institute of Mechanics, National Academy of Sciences of Armenia. Erevan, 1997. P. 79–96.]
  2. Rayleigh J. On waves propagated along the surface of an elastic solid // Proc. Lond. Math. Soc. 1885. Vol. 17, № 253. P. 4–11.
  3. Коненков Ю. К. Об изгибной волне «рэлеевского» типа // Акуст. журн. 1960. Т. 6, вып. 1. С. 124–126. [Konenkov Y. K. A Rayleigh-type flexural wave // Soviet Physics Acoustics. 1960. Vol. 6, iss. 1. P. 124–126.]
  4. Fu Y. B. Existence and uniqueness of edge waves in a generally anisotropic elastic plate // Q. J. Mech. Appl. Math. 2003. Vol. 56. P. 605—616.
  5. Kaplunov J. D., Kossovich L. Yu., Wilde M. V. Free localized vibrations of a semi-infinite cylindrical shell // J. Acoust. Soc. America. 2000. Vol. 107, № 3. P. 1383–1393.
  6. Kaplunov J. D., Wilde M. V. Edge and interfacial vibrations in elastic shells of revolution // J. Appl. Math. Phys. (ZAMP). 2000. Vol. 51. P. 29–48.
  7. Kaplunov J. D., Prikazchikov D. A., Rogerson G. A. On three-dimensional edge waves in semi-infinite isotropic plates subject to mixed face boundary conditions // J. Acoust. Soc. Am. 2005. № 118(5). P. 2975—2983.
  8. Zernov V., Kaplunov J. D. Three-dimensional edge waves in plates // Proc. R. Soc. Lond. A. 2008. Vol. 464. P. 301–318.
  9. Вильде М.В., Каплунов Ю. Д., Коссович Л. Ю. Краевые и интерфейсные резонансные явления в упругих телах. М. : Физматлит, 2010. 280 с. [Wilde M. V., Kaplunov J. D., Kossovich L. Yu. Edge and interfacial resonance phenomena in elastic bodies. Moscow : Fizmatlit, 2010. 280 p.]