For citation:
Magomed-Kasumov M. M. Approximation of Functions by Fourier–Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, vol. 14, iss. 3, pp. 295-304. DOI: 10.18500/1816-9791-2014-14-3-295-304, EDN: SMSJVV
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
10.09.2014
Full text:
(downloads: 219)
Language:
Russian
Heading:
UDC:
517.521
EDN:
SMSJVV
Approximation of Functions by Fourier–Haar Sums in Weighted Variable Lebesgue and Sobolev Spaces
Autors:
Magomed-Kasumov Magomedrasul Magomedrasul, Daghestan Scientific Centre of Russian Academy of Sciences
Abstract:
It is considered weighted variable Lebesgue Lp(x)w and Sobolev Wp(⋅),w spaces with conditions on exponent p(x)≥1 and weight w(x) that provide Haar system to be a basis in Lp(x)w. In such spaces there were obtained estimates of Fourier–Haar sums convergence speed. Estimates are given in terms of modulus of continuity Ω(f,δ)p(⋅),w, based on mean shift (Steklov's function).
Key words:
References:
- Sharapudinov I. I. Topology of the space Lp(t)([0, 1]). Mat. Zametki, 1979, vol. 26, no. 4, pp. 613–632. DOI: 10.1007/BF01159546.
- Sharapudinov I. I. Some aspects of approximation theory in variable Lebesgue spaces. Vladikavkaz, 2012, 270 p. (in Russian).
- Diening L., Harjulehto P., Hasto P., Ruzicka M. Lebesgue and Sobolev Spaces with Variable Exponents. Berlin, Heidelberg, Springer-Verlag, 2011, 509 p. DOI : 10.1007/978-3-642-18363-8.
- Cruz-Uribe D., Fiorenza A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Berlin, Heidelberg, Springer-Verlag, 2013. 312 p. DOI 10.1007/978-3-0348- 0548-3.
- Sharapudinov I.I. Approximation of function by Fourier— Haar sums in variable exponent Lebesgue and Sobolev spaces by Fourier—Haar sums. Sb. Math., 2014, vol. 205, no. 2, pp. 145–160. DOI: 10.4213/sm8274.
- Magomed-Kasumov M. G. Basis property of the Haar system in the weighted variable Lebesgue spaces. Poriadkovyi analiz i smezhnye voprosy matematicheskogo modelirovaniia: tezisy dokladov mezhdunarodnoi nauchnoi konferentsii (Vladikavkaz, 14—20.07.2013). Vladikavkaz, 2013, pp. 68–69 (in Russian).
- Magomed-Kasumov M. G. Basis property of the Haar system in the weighted variable Lebesgue spaces. Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Mathematical Journal], 2014, vol. 16, iss. 3, pp. 38–46 (in Russian).
- Kashin B. S., Saakyan A. A. Orthogonal series. Translations of Math. Monographs, vol. 75, Providence, RI, Amer. Math. Soc., 1989.
- Sharapudinov I.I. On the basis property of the Haar system in the space Lp(t)([0, 1]) and the principle of localization in the mean. Math. of the USSRSbornik, 1987, vol. 58, no. 1, pp. 279—287. DOI: 10.1070/SM1987v058n 01ABEH003104.
- Guven A., Israfilov D. M. Trigonometric approximation in generalized lebesgue spaces Lp(x). J. Math. Inequal., 2010, vol. 4, no. 2, pp. 285–299.
- Shakh-Emirov T. N. O ravnomernoi ogranichennosti semeistva operatorov Steklova v vesovykh prostranstvakh Lebega s peremennym pokazatelem [Uniform boundedness of Steklov’s operators families in weighted variable Lebesgue spaces]. Vestnik DNC RAN, 2014, iss. 54, pp. 12–17 (in Russian).
- Sobol I. M. Mnogomernye kvadratnye formuly i funktsii Khaara [Multidimensional Quadrature Formulas and Haar Functions]. Moscow, Nauka, 1969, 288 p. (in Russian).
Received:
18.03.2014
Accepted:
18.07.2014
Published:
10.09.2014
- 1194 reads