For citation:
Likhacheva T. V. Approximation of Functions in Symmetrical and Connected Holder Spaces by Linear Means of Fourier–Vilenkin Series. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, vol. 14, iss. 3, pp. 287-294. DOI: 10.18500/1816-9791-2014-14-3-287-294, EDN: SMSJVL
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
10.09.2014
Full text:
(downloads: 210)
Language:
Russian
Heading:
UDC:
517.51
EDN:
SMSJVL
Approximation of Functions in Symmetrical and Connected Holder Spaces by Linear Means of Fourier–Vilenkin Series
Autors:
Likhacheva Tatyana Vladimirovna, Saratov State University
Abstract:
In this paper some summation methods are applied to Fourier-Vilenkin series in so called symmetric spaces. These methods use triangular matrix with sums in rows tending to zero and with some conditions on difference of coefficients. The triginometric counterpart of our results are due to M. L. Mittal, B. E. Rhoades, A. Guven, etc.
References:
- Golubov B., Efimov A., Skvortsov V. Walsh series and transforms. Dodrecht; Boston; London, Kluwer Academic Publishers, 1991, 368 p. (Rus. ed. : Golubov B. I., Efimov A. V., Skvortsov V. A. Riady i preobrazovaniia Uolsha. Teoriia i primeneniia. Moscow, Nauka, 1987, 544 p.)
- Krein S., Petunin J., Semenov E. Interpolation of linear operators. Translations Math. Monographs, vol. 55, Providene, R. I., Amer. Math. Soc., 1992. (Rus. ed. : Krein S. G., Petunin Iu. I, Semenov E. M. Interpoliatsiia lineinykh operatorov. Moskow, Nauka, 1987, 400 p.)
- Volosivets S. S. On Hardy and Bellman transforms of series with respect to multiplicative systems in symmetric spaces. Analysis Math, 2009, vol. 35, no. 2, pp. 131–148.
- Mittal M. L., Rhoades B. E., Mishra V. N., Singh V. Using infinite matrix to approximate functions of class Lip(®, p) using trigonometric polynomials. J. Math. Anal. Appl., 2007, vol. 326, no. 1, pp. 667–676.
- Guven A. Trigonometric approximation in reflexive Orlicz spaces. Anal. Theory Appl., 2011, vol. 27, no. 2, pp. 125–137.
- Iofina T. V., Volosivets S. S. On the degree of approximation by means of Fourier –Vilenkin series in Holder and Lp norm. East J. Approximations, 2009, vol. 15. no. 2. pp. 143–158.
- Leindler L. On the degree of approximation of continuous functions. Acta Math. Hungar., 2004, vol. 104, pp. 105–113.
- Bari N. K., Stechkin S. B. Nailuchshie priblizheniia i differentsial’nye svoistva dvukh sopriazhennykh funktsii. [Best approximations and differential properties of two conjugate functions]. Trudy Mosk. mat. obshchestva, 1956, vol. 5, pp. 488–522 (in Russian).
- Lindenstrauss J., Tzafriri L. Classical Banach spaces II. Berlin, Springer, 1973, 243 p.
- Schipp F. On Lp-norm convergence of series with respect to product systems. Anal. Math., 1976, vol. 2, pp. 49–64.
- Simon P. Verallgemeinerte Walsch – Fourierreihen. Acta Math. Hungar., 1976, vol. 27, no. 3–4, pp. 329–341.
- Hardy G. H. Divergent Series. New York, Oxford Univ. Press, 1949, 395 p. (Rus. ed. : Hardy G. Raskhodiashchiesia riady. Moscow, Izd-vo inostr. literatury, 1951, 505 p.)
- Zelin H. The derivatives and integrals of fractional order in Walsh-Fourier analysis with application to approximation theory. J. Approx. Theory., 1983, vol 39, no. 3, pp. 261–273.
- Fridli S. On the rate of convergence of Cesaro means of Walsh – Fourier series. J. Approx. Theory., 1994, vol. 76, no. 1, pp. 31–53.
Received:
10.03.2014
Accepted:
11.08.2014
Published:
10.09.2014
- 1058 reads