For citation:
Matveev O. A. Approximation Polynomials and Dirichlet L-functions Behavior in the Critical Strip. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 4, pp. 80-83. DOI: 10.18500/1816-9791-2013-13-4-80-83
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
25.11.2013
Full text:
(downloads: 224)
Language:
Russian
Heading:
UDC:
511.3
Approximation Polynomials and Dirichlet L-functions Behavior in the Critical Strip
Autors:
Matveev Ol'ga Andreevna, Saratov State University
Abstract:
In this paper a sequence of Dirichlet polynomials that approximate Dirichlet L-functions is constructed. This allows to calculate zeros of L-functions in an effective way and make an assumptions about Dirichlet L-function behavior in the critical strip.
Key words:
References:
- Kuznetsov V. N. Analog of Szeg¨o’s theorem for a class of Dirichlet series. Math. Notes, 1984, vol. 35, iss. 6, pp. 903–907.
- Korotkov A. E., Matveeva O. A. Ob odnom chislennom algoritme opredelenija nulej celyh funkcij, opredeljonnyh rjadami Dirihle s periodicheskimi kojefficientami. [On a computing algorithm of calculation of zeroes of the integral functions]. Nauch. vedomosti Belgorodskogo gosudarstvennogo un-ta. Ser. Matematika. Fizika, 2011, vol. 24, iss. 17, pp. 47–53 (in Russian).
- Voronin S. M., Karacuba A. A. Dzeta-funktsiia Rimana [The Riemann Zeta-Function]. Moscow, Fizmatlit, 1994, 376 p. (in Russian).
- Kuznetsov V. N., Vodolazov A. M. Approksimacionnyj kriterij periodichnosti konechnoznachnyh funkcij natural’nogo argumenta [Approximated criterion for periodicity of the finitely valued functions of a natural argument]. Issledovanija po algebre, teorii chisel, funkc. analizu i smezhnym voprosam : Mezhvuz. sb. nauch. tr., Saratov, Saratov Univ. Press, 2003, iss. 2, pp. 2–11 (in Russian).
- Titchmarsh E. K. Teoriia funktsii [Function theory]. Moscow, Nauka, 1980, 464 p. (in Russian).
- Prahar K. Raspredelenie prostykh chisel [Distribution of primes]. Moscow, Mir, 1967, 511 p. (in Russian).
- Levin B. Ja. Raspredelenie kornej celyh funkcij [Distribution of roots of integer functions]. Moscow, Izdvotehniko-teoretich. literat., 1956, 632 p. (in Russian).
- Turan P. O novyh rezul’tatath v analiticheskoj teorii chisel [On a new results in number theory]. Problemy analiticheskoj teorii chisel, Moscow, Mir, 1975, pp. 118–142 (in Russian).
- Titchmarsh E.C. Teoriia dzeta-funktsii Rimana [The Theory of the Riemann Zeta-Function]. Moscow, 1930, 409 p. (in Russian).
Short text (in English):
(downloads: 107)
- 1178 reads