Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Matveev O. A. Approximation Polynomials and Dirichlet L-functions Behavior in the Critical Strip. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 4, pp. 80-83. DOI: 10.18500/1816-9791-2013-13-4-80-83

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 158)

Approximation Polynomials and Dirichlet L-functions Behavior in the Critical Strip

Matveev Ol'ga Andreevna, Saratov State University

In this paper a sequence of Dirichlet polynomials that approximate Dirichlet L-functions is constructed. This allows to calculate zeros of L-functions in an effective way and make an assumptions about Dirichlet L-function behavior in the critical strip.

  1. Kuznetsov V. N. Analog of Szeg¨o’s theorem for a class of Dirichlet series. Math. Notes, 1984, vol. 35, iss. 6, pp. 903–907.
  2. Korotkov A. E., Matveeva O. A. Ob odnom chislennom algoritme opredelenija nulej celyh funkcij, opredeljonnyh rjadami Dirihle s periodicheskimi kojefficientami. [On a computing algorithm of calculation of zeroes of the integral functions]. Nauch. vedomosti Belgorodskogo gosudarstvennogo un-ta. Ser. Matematika. Fizika, 2011, vol. 24, iss. 17, pp. 47–53 (in Russian).
  3. Voronin S. M., Karacuba A. A. Dzeta-funktsiia Rimana [The Riemann Zeta-Function]. Moscow, Fizmatlit, 1994, 376 p. (in Russian).
  4. Kuznetsov V. N., Vodolazov A. M. Approksimacionnyj kriterij periodichnosti konechnoznachnyh funkcij natural’nogo argumenta [Approximated criterion for periodicity of the finitely valued functions of a natural argument]. Issledovanija po algebre, teorii chisel, funkc. analizu i smezhnym voprosam : Mezhvuz. sb. nauch. tr., Saratov, Saratov Univ. Press, 2003, iss. 2, pp. 2–11 (in Russian).
  5. Titchmarsh E. K. Teoriia funktsii [Function theory]. Moscow, Nauka, 1980, 464 p. (in Russian).
  6. Prahar K. Raspredelenie prostykh chisel [Distribution of primes]. Moscow, Mir, 1967, 511 p. (in Russian).
  7. Levin B. Ja. Raspredelenie kornej celyh funkcij [Distribution of roots of integer functions]. Moscow, Izdvotehniko-teoretich. literat., 1956, 632 p. (in Russian).
  8. Turan P. O novyh rezul’tatath v analiticheskoj teorii chisel [On a new results in number theory]. Problemy analiticheskoj teorii chisel, Moscow, Mir, 1975, pp. 118–142 (in Russian).
  9. Titchmarsh E.C. Teoriia dzeta-funktsii Rimana [The Theory of the Riemann Zeta-Function]. Moscow, 1930, 409 p. (in Russian).
Short text (in English):
(downloads: 53)