For citation:
Kaplunov J. D., Zupancic B., Nikonov A. V. Asymptotic analysis of the axisymmetric problem for the transverse compression of a thin elastic disk in the case of mixed boundary conditions along its faces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 1, pp. 57-62. DOI: 10.18500/1816-9791-2024-24-1-57-62, EDN: LNJVVN
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
01.03.2024
Full text:
(downloads: 362)
Language:
Russian
Heading:
Article type:
Article
UDC:
539.3
EDN:
LNJVVN
Asymptotic analysis of the axisymmetric problem for the transverse compression of a thin elastic disk in the case of mixed boundary conditions along its faces
Autors:
Kaplunov Julius Davidovich, Keele University
Zupancic Barbara, National Institute of Chemistry
Nikonov Anatolij V., University of Ljubljana
Abstract:
The axisymmetric problem for the transverse compression of a thin elastic disk is considered in slip absence. An asymptotic solution for the interior stress-strain state is constructed. An approach to determining a plane boundary layer localized near the outer contour of the disk is outlined.
Key words:
References:
- Goldenweiser A. L. Teoriya uprugikh tonkikh obolochek [Theory of Elastic Thin Shells]. Moscow, Nauka, 1976. 512 p. (in Russian).
- Kossovich L. Yu. Nestatsionarnye zadachi teorii uprugikh tonkikh obolochek [Nonstationary Problems in the Theory of Elastic Thin Shells]. Saratov, Saratov State University Publ., 1986. 176 p. (in Russian).
- Kaplunov J. D., Kossovich L. Yu., Nolde E. V. Dynamics of Thin Walled Elastic Bodies. San-Diego, Academic Press, 1998. 226 p. https://doi.org/10.1016/c2009-0-20923-8
- Kaplunov J. D., Kossovich L. Yu., Moukhomodiarov R. R. Impact normal compression of an elastic plate: analysis utilising an advanced asymptotic 2D model. Mechanics Research Communications, 2000, vol. 27, iss. 1, pp. 117–122. https://doi.org/10.1016/S0093-6413(00)00070-7
- Agalovyan L. A. Asimptoticheskaya teoriya anizotropnykh plastin i obolochek [The Asymptotic Theory of Anisotropic Plates and Shells]. Moscow, Nauka, 1997. 414 p. (in Russian).
- Goldenweiser A. L. General theory of thin elastic bodies (shells, coatings, and gaskets). Mechanics of Solids, 1992, vol. 3, pp. 5–17 (in Russian).
- Kaplunov J., Prikazchikov D., Sultanova L. Justification and refinement of Winkler – Fuss hypothesis. Zeitschrift fur angewandte Mathematik und Physik, 2018, vol. 69, art. 80. https://doi.org/10.1007/s00033-018-0974-1
- Wilde M. V., Kaplunov J. D., Kossovich L. Yu. Kraevye i interfeysnye rezonansnye yavleniya v uprugikh telakh [Edge and Interfacial Resonance Phenomena in Elastic Bodies]. Moscow, Fizmatlit, 2010. 280 p. (in Russian).
- Kaplunov J. D., Kossovich L. Yu., Wilde M. V. Free localized vibrations of a semi-infinite cylindrical shell. The Journal of the Acoustical Society of America, 2000, vol. 107, iss. 3, pp. 1383–1393. https://doi.org/10.1121/1.428426
Received:
05.12.2023
Accepted:
28.12.2023
Published:
01.03.2024
- 788 reads