Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Kaplunov J. D., Zupancic B., Nikonov A. V. Asymptotic analysis of the axisymmetric problem for the transverse compression of a thin elastic disk in the case of mixed boundary conditions along its faces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 1, pp. 57-62. DOI: 10.18500/1816-9791-2024-24-1-57-62, EDN: LNJVVN

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
01.03.2024
Full text:
(downloads: 220)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.3
EDN: 
LNJVVN

Asymptotic analysis of the axisymmetric problem for the transverse compression of a thin elastic disk in the case of mixed boundary conditions along its faces

Autors: 
Kaplunov Julius Davidovich, Keele University
Zupancic Barbara, National Institute of Chemistry
Nikonov Anatolij V., University of Ljubljana
Abstract: 

The axisymmetric problem for the transverse compression of a thin elastic disk is considered in slip absence.  An asymptotic solution for the interior stress-strain state is constructed. An approach to determining a plane boundary layer localized near the outer contour of the disk is outlined.

References: 
  1. Goldenweiser A. L. Teoriya uprugikh tonkikh obolochek [Theory of Elastic Thin Shells]. Moscow, Nauka, 1976. 512 p. (in Russian).
  2. Kossovich L. Yu. Nestatsionarnye zadachi teorii uprugikh tonkikh obolochek [Nonstationary Problems in the Theory of Elastic Thin Shells]. Saratov, Saratov State University Publ., 1986. 176 p. (in Russian).
  3. Kaplunov J. D., Kossovich L. Yu., Nolde E. V. Dynamics of Thin Walled Elastic Bodies. San-Diego, Academic Press, 1998. 226 p. https://doi.org/10.1016/c2009-0-20923-8
  4. Kaplunov J. D., Kossovich L. Yu., Moukhomodiarov R. R. Impact normal compression of an elastic plate: analysis utilising an advanced asymptotic 2D model. Mechanics Research Communications, 2000, vol. 27, iss. 1, pp. 117–122. https://doi.org/10.1016/S0093-6413(00)00070-7
  5. Agalovyan L. A. Asimptoticheskaya teoriya anizotropnykh plastin i obolochek [The Asymptotic Theory of Anisotropic Plates and Shells]. Moscow, Nauka, 1997. 414 p. (in Russian).
  6. Goldenweiser A. L. General theory of thin elastic bodies (shells, coatings, and gaskets). Mechanics of Solids, 1992, vol. 3, pp. 5–17 (in Russian).
  7. Kaplunov J., Prikazchikov D., Sultanova L. Justification and refinement of Winkler – Fuss hypothesis. Zeitschrift fur angewandte Mathematik und Physik, 2018, vol. 69, art. 80. https://doi.org/10.1007/s00033-018-0974-1
  8. Wilde M. V., Kaplunov J. D., Kossovich L. Yu. Kraevye i interfeysnye rezonansnye yavleniya v uprugikh telakh [Edge and Interfacial Resonance Phenomena in Elastic Bodies]. Moscow, Fizmatlit, 2010. 280 p. (in Russian).
  9. Kaplunov J. D., Kossovich L. Yu., Wilde M. V. Free localized vibrations of a semi-infinite cylindrical shell. The Journal of the Acoustical Society of America, 2000, vol. 107, iss. 3, pp. 1383–1393. https://doi.org/10.1121/1.428426 
Received: 
05.12.2023
Accepted: 
28.12.2023
Published: 
01.03.2024