For citation:
Ignatyev M. Y. Asymptotics of Solutions of Some Integral Equations Connected with Differential Systems with a Singularity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, vol. 20, iss. 1, pp. 17-28. DOI: 10.18500/1816-9791-2020-20-1-17-28, EDN: QEZGRI
Asymptotics of Solutions of Some Integral Equations Connected with Differential Systems with a Singularity
Our studies concern some aspects of scattering theory of the singular differential systems y′ − x−1Ay − q(x)y = ρBy, x > 0 with n × n matrices A, B, q(x), x ∈ (0, ∞), where A, B are constant and ρ is a spectral parameter. We concentrate on investigation of certain Volterra integral equations with respect to tensor-valued functions. The solutions of these integral equations play a central role in construction of the so-called Weyl-type solutions for the original differential system. Actually, the integral equations provide a method for investigation of the analytical and asymptotical properties of the Weyl-type solutions while the classical methods fail because of the presence of the singularity. In the paper, we consider the important special case when q is smooth and q(0) = 0 and obtain the classical-type asymptotical expansions for the solutions of the considered integral equations as ρ → ∞ with o (ρ−1) rate remainder estimate. The result allows one to obtain analogous asymptotics for the Weyl-type solutions that play in turn an important role in the inverse scattering theory.
- Brunnhuber R., Kostenko A., Teschl G. Singular Weyl – Titchmarsh – Kodaira theory for one-dimensional Dirac operators. Monatshefte fur Mathematik ¨ , 2014, vol. 174, pp. 515– 547. DOI: https://doi.org/10.1007/s00605-013-0563-5
- Albeverio S., Hryniv R., Mykytyuk Ya. Reconstruction of radial Dirac operators. J. Math. Phys., 2007, vol. 48, iss. 4, 043501, 14 p. DOI: https://doi.org/10.1063/1.2709847
- Albeverio S., Hryniv R., Mykytyuk Ya. Reconstruction of radial Dirac and Schr´’odinger operators from two spectra. J. Math. Anal. Appl., 2008, vol. 339, iss. 1, pp. 45–57. DOI: https://doi.org/10.1016/j.jmaa.2007.06.034
- Serier F. Inverse Problems Inverse spectral problem for singular Ablowitz–Kaup–Newell–Segur operators on [0, 1]. Inverse Problems, 2006, vol. 22, no. 4, pp. 1457–1484. DOI: https://doi.org/10.1088/0266-5611/22/4/018
- Gorbunov O. B., Shieh C.-T., Yurko V. A. Dirac system with a singularity in an interior point. Applicable Analysis, 2016, vol. 95, iss. 11, pp. 2397–2414. DOI: https://doi.org/10.1080/00036811.2015.1091069
- Beals R., Coifman R. R. Scattering and inverse scattering for first order systems. Comm. Pure Appl. Math., 1984, vol. 37, iss. 1, pp. 39–90. DOI: https://doi.org/10.1002/cpa.3160370105
- Zhou X. Direct and inverse scattering transforms with arbitrary spectral singularities. Comm. Pure Appl. Math. 1989, vol. 42, iss. 7, pp. 895–938. DOI: https://doi.org/10.1002/cpa.3160420702
- Yurko V. A. Inverse spectral problems for differential systems on a finite interval. Results Math., 2005, vol. 48, iss. 3–4, pp. 371–386. DOI: https://doi.org/10.1007/BF03323374
- Ignatyev M. Spectral analysis for differential systems with a singularity. Results Math., 2017, vol. 71, iss. 3–4, pp. 1531–1555. DOI: https://doi.org/10.1007/s00025-016-0605-0
- Yurko V. A. On higher-order differential operators with a singular point. Inverse Problems, 1993, vol. 9, no. 4, pp. 495–502. DOI: https://doi.org/10.1088/0266-5611/9/4/004
- Fedoseev A. E. Inverse problems for differential equations on the half-line having a singularity in an interior point. Tamkang Journal of Mathematics, 2011, vol. 42, no. 3, pp. 343–354. DOI: https://doi.org/10.5556/j.tkjm.42.2011.879
- Beals R., Deift P., Tomei C. Direct and inverse scattering on the line. Providence, Rhod Island, American Mathematical Society, 1988. 209 p.
- Sibuya Yu. Stokes phenomena. Bull. Amer. Math. Soc., 1977, vol. 83, no. 5, pp. 1075– 1077.
- Ignatiev M. Integral transforms connected with differential systems with a singularity. Tamkang Journal of Mathematics, 2019, vol. 50, no. 3, pp. 253–268. DOI: https://doi.org/10.5556/j.tkjm.50.2019.3353
- 1382 reads