Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Kossovich L. Y., Моrozov K. M., Pavlova O. E. Biomechanics of Human Carotid Artery with Pathological Tortuosity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 3, pp. 76-82. DOI: 10.18500/1816-9791-2013-13-3-76-82

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
27.08.2013
Full text:
(downloads: 144)
Language: 
Russian
Heading: 
UDC: 
501.1

Biomechanics of Human Carotid Artery with Pathological Tortuosity

Autors: 
Kossovich Leonid Yurevich, Saratov State University
Моrozov Konstantin Moiseevich, I. M. Sechenov First Moscow State Medical University
Pavlova Olga Evgenevna, Saratov State University
Abstract: 

Pathological tortuosity of carotid artery ranks second among the causes of cerebro-vascular insufficiency. In their previous researches authors have described the influence of pathological tortuosity type on carotid artery behaviour. In this article we discuss the influence of different anatomic (bending angle, bulb size) and rheological factors on haemodynamics and stress-strain state of carotid artery with pathological tortuosity. Decreasing of the bending angle leads to blood volume reduction in brain and possible formation of septal stenosis in bending area. Diminution of hematocrit level promotes the initiation of atherogenesis in internal carotid bend. Computational modeling of reconstructive surgery of pathologically tortuous carotid of the patient with atherosclerosis was carried out. Numerical analysis of plausible model of patient carotid before pathology formation was conducted. Volume blood flow after surgery has increased by 11%, but remained to be lower than in the healthy patient.

References: 
  1. Zabolevaemost’ vzroslogo naseleniia Rossii v 2011 godu [Morbidity rate of adult population of Russia in 2011]. Moscow, 2012, pt. 3, 525 p. (in Russian).
  2. Demographical Annual of Russia. 2012. Available at: http://www.gks.ru/bgd/regl/B12_16/Main.htm (Accessed 01, July, 2013).
  3. Spiridonov A. A., Lavrent’ev A. V., Morozov K. M., Pirtskhalaishvili Z. K. Mikrokhirurgichsekaia revasku- liarizatsiia karotidnogo basseina [Microsurgical revasculization of carotid system]. Moscow, 2000, 266 p. (in Russian).
  4. Prencipe G., Pellegrino L., Vairo F., Tomaiuolo M., Furio O. A. Dolichoarteriopathy (kinking, coiling, tortuosity) of the carotid arteries and cardiovascular risk factors. Minerva Cardioangiol, 1998, vol. 46, no. 1–2, pp. 1–7.
  5. Pavlova O. E., Ivanov D. V., Gramakova A. A., Morozov K. M., Suslov I. I. Hemodynamics and Mechanical Behavior of Pathologically Tortuous Carotid Arteries. Izv. Sarat. Univ. N.S. Ser. Math. Mech. Inform., 2010, vol. 10, iss. 2, pp. 66–73 (in Russian).
  6. Pavlova O. E., Ivanov D. V., Kirillova I. V. Computational Investigation of Pathological Tortuosity Influence on artery bloodflow. Ansys Advantage. Russian Edition., 2012, iss. 18, pp. 47–48 (in Russian).
  7. Pavlova O. E. Operativnoe vmeshatel’stvo na sonnykh arteriiakh s patologiei [Surgical Treatment of Carotid Arteries with Tortuosity]. Matematicheskoe modelirova- nie i biomekhanika v sovremennom universitete : tezisy dokladov VII Vserossiiskoi shkoly-seminara, Rostov-on- Don, 2012, pp. 98 (in Russian).
  8. Golyadkina А. А., Kirillova I. V., Schuchkina О. А., Maslyakova G. N., Ostrovskiy N. V., Chelnokova N. O. The Finite Element Modelling of Ischemic Heart Disease Based on the Morphological and Functional Changes of Human Coronary Arteries and Myocardium. Russian Journal of Biomechanics, 2011, vol. 15, iss. 4, pp. 33– 46 (in Russian).
  9. Golyadkina А. А., Kirillova I. V., Schuchkina О. А. Investigation of Human Coronary Arteries and Heart Ventricles Mode of Deformation and Haemodynamics Vestnik SamGTU. Ser. Fiz.-Math. Nauk., 2011, vol. 3, iss. 24, pp. 79–88 (in Russian).
  10. Golyadkina А. А., Kirillova I. V. Numerical Modeling of Stress-streain State of Normal and Pathological Human Ventricle Walls Vestnik of Lobachevsky State University of Nizhni Novgorod, 2011, vol. 4, iss. 2, pp. 415–417 (in Russian).
  11. Kamenskiy A. V. Matematicheskoe modelirovanie povedeniia bifurkatsii sonnoi arterii cheloveka na razlichnykh stadiiakh ateroskleroticheskogo porazheniia i posle operatsionnogo vmeshatel’stva. Diss. kand. fiz.- mat. nauk [Mathematical modeling of carotid bifurcation behaviour at different stages of atherosclerosis and after surgical treatment : Cand. phys. and math. sci. diss.]. Saratov, 2007. 170 p. (in Russian).
  12. Wu Wei, Qi Min, Liu Xiao-Peng Yang, Da-Zhi, Wang Wei-Qiang. Delivery and release of nitinol stent in carotid artery and their interactions: A finite element analysis. J. Biomech., 2007, vol. 40, pp. 3034–3040. 13. Kural M. H., Cai M., Tang D., Gwyther T., Zheng J., Billiar K. L. Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling. J. Biomech., 2012, vol. 45, pp. 790–798.
Received: 
21.02.2013
Accepted: 
23.07.2013
Published: 
30.08.2013
Short text (in English):
(downloads: 70)