Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Donnik A. M., Ivanov D. V., Kossovich L. Y., Levchenko K. K., Kireev S. I., Моrozov K. M., Ostrovsky N. V., Zaretskov V. V., Likhachev . V. Creation of Three-Dimensional Solid-State Models of a Spine with Transpedicular Fixation Using a Specialized Software. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2019, vol. 19, iss. 4, pp. 424-438. DOI: 10.18500/1816-9791-2019-19-4-424-438

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
02.12.2019
Full text:
(downloads: 125)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.3:617.547

Creation of Three-Dimensional Solid-State Models of a Spine with Transpedicular Fixation Using a Specialized Software

Autors: 
Donnik Anna M., Saratov State University
Ivanov Dmitrii V., Saratov State University
Kossovich Leonid Yurevich, Saratov State University
Levchenko Kristina K., State Medical University name after V. I. Razumovsky
Kireev Sergey I., Saratov State University
Моrozov Konstantin Moiseevich, I. M. Sechenov First Moscow State Medical University
Ostrovsky Nikolay V., Saratov State University
Zaretskov Vladimir V., Peter the Great Saint Petersburg Polytechnic University
Likhachev Sergey V., State Medical University name after V. I. Razumovsky
Abstract: 

Biomechanical experiments are widely used to study the mechanical characteristics of spinal elements under various types of loading. The correct construction of three-dimensional models is especially important for studying the behavior of the spine after surgery, for example, the installation of fixing metal structures. There are several approaches to modeling each anatomical component of the spinal column. It is generally accepted to construct vertebral bodies of a simulated spinal segment based on the results of computed tomography. Then, intervertebral discs in the form of cylindrical bodies, facet joints and ligaments are modeled. This paper describes the construction of a solid-state model of the Th7-L1 spinal segment with transpedicular fixation and an interbody cage. The construction was carried out using a set of software products Materialize Mimics, 3-Matic, SolidWorks and ANSYS.

References: 
  1. Shulga A. E., Ninel’ V. G., Norkin I. A., Puchin’yan D. M., Zaretskov V. V., Korshunova G. A., Ostrovskii V. V., Smolkin A. A. Contemporary views on the pathogenesis of trauma to the spinal cord and peripheral nerve trunks. Neuroscience and Behavioral Physiology, 2015, vol. 45, no. 7, pp. 811–819. DOI: https://doi.org/10.1007/s11055-015-0148-y
  2. Zaretskov V. V., Arseniyevich V. B., Likhachev S. V., Shulga A. E., Stepukhovich S. V., Bogomolova N. V. Injury to the Transient Thoracolumbar Spine. Pediatric Traumatology, Orthopedics and Reconstructive Surgery, 2015, vol. 4, no. 2, pp. 61–66 (in Russia).
  3. Donnik A. M., Kirillova I. V., Kossovich L. Yu., Zaretskov V. V., Lykhachev S. V., Norkin I. A. Biomechanical modeling of reconstructive intervention on the thoracolumbar transition. AIP Conference Proceedings, 2018, vol. 1959, iss. 1, art. 090002. DOI: https://doi.org/10.1063/1.50347412018
  4. Likhachev S. V., Zaretskov V. V., Arsenievich V. B., Shulga A. E., Shchanitsyn I. N., Skripachenko K. K. Biomechanical Aspects of Circular Spondylosynthesis of the Transient Thoracolumbar Spine. Saratov Journal of Medical Scientific Research, 2018, vol. 14, no. 3, pp. 560–566 (in Russia).
  5. Su J.-C., Li Z.-D., Cao L.-H., Yu B.-G., Zhang C.-C., Li M. Three-dimensional finite element analysis of lumbar vertebra loaded by static stress and its biomechanical significance. Chinese Journal of Traumatology, 2009, vol. 12, no. 3, pp. 153–156. DOI: https://doi.org/10.3760/cma.j.issn.1008-1275.2009.03.006
  6. Xu M., Yang J., Lieberman I. H., Haddas R. Lumbar spine finite element model for healthy subjects: development and validation. Computer Methods in Biomechanics and Biomedical Engineering, 2016, vol. 20, iss. 1, pp. 1–15. DOI: https://doi.org/10.1080/10255842.2016.1193596
  7. Kudyashev A. L., Hominets V. V., Teremshonok A. V., Korostelev K. E., Nagornyy E. B., Dol A. V., Ivanov D. V., Kirillova I. V., Kossovich L. Yu. Biomechanical background for the formation of proximal transition kyphosis after the transpedicular fixation of the lumbar spine. Russian Journal of Biomechanics, 2017, vol. 21, no. 3, pp. 313–323 (in Russia). DOI: https://doi.org/10.15593/RZhBiomeh/2017.3.07
  8. Dol A. V., Dol E. S., Ivanov D. V. Biomechanical modeling of surgical reconstructive treatment of spinal spondylolisthesis at L4-L5 level. Russian Journal of Biomechanics, 2018, vol. 22, no. 1, pp. 31–44 (in Russia). DOI: https://doi.org/10.15593/RZhBiomeh/2018.1.00
  9. Kudyashev A. L., Khominets V. V., Teremshonok A. V., Nagornyy Ye. B., Stadnichenko S. Yu., Dol A. V., Ivanov D. V., Kirillova I. V., Kossovich L. Yu., Kovtun A. L. Biomechanical modeling in surgical treatment of a patient with true lumbar spondylolisthesis. Spine Surgery, 2018, vol. 15, no. 4, pp. 87–94 (in Russia). DOI: https://doi.org/10.14531/2018,4.87-94
  10. Kim Y. H., Khuyagbaatar B., Kim K. Recent advances in finite element modeling of the human cervical spine. Journal of Mechanical Science and Technology, 2018, vol. 32, iss. 1, pp. 1–10. DOI https://doi.org/10.1007/s12206-017-1201-2
  11. Dreischarf M., Rohlmann A., Bergmann G., Zander T. Optimised loads for the simulation of axial rotation in the lumbar spine. Journal of Biomechanics, 2011, vol. 44, iss. 12, pp. 2323—2327. DOI: https://doi.org/10.1016/j.jbiomech.2011.05.040
  12. Galbusera F., Bassani T., Barbera L. L., Ottardi C., Schlager B., Brayda-Bruno M., Villa T., Wilke H.-J. Planning the surgical correction of spinal deformities: toward the identification of the biomechanical principles by means of numerical simulation. Frontiers in Bioengineering and Biotechnology, 2015, vol. 3, art. 178. DOI: https://doi.org/10.3389/fbioe.2015.00178
  13. Tsouknidas A., Michailidis N., Savvakis S., Anagnostidis K., Bouzakis K.-D., Kapetanos G. A finite element model technique to determine the mechanical response of a lumbar spine segment under complex loads. Journal of Applied Biomechanics, 2012. vol. 28, iss. 4, pp. 448—456. DOI: https://doi.org/10.1123/jab.28.4.448
  14. Toosizadeh N., Haghpanabi M. Generating a finite element model of the cervical spine: estimating muscle forces and internal loads. Scientia Iranica B, 2017, vol. 18, no. 6, pp. 1237–1245. DOI: https://doi.org/10.1016/j.scient.2011.10.002
  15. Tyndyka M. A., Barron V., McHugh P. E., O’Mahoney D. Generation of a finite element model of the thoracolumbar spine. Acta of Bioengineering and Biomechanics, 2017, vol. 9, no. 1, pp. 35—46.
  16. Su Y.-S., Ren D., Wang P.-C. Comparison of biomechanical properties of single and twosegment fusion for Denis type B spinal fractures. Orthopaedic Surgery, 2013, vol. 5, iss. 4, pp. 266–273. DOI: https://doi.org/10.1111/os.12068
  17. Zhao Y., Li Q., Mo Z., Sun Y., Fan Y. Finite element analysis of cervical arthroplasty with fusion against 2-level fusion. Journal of Spinal Disorders and Techniques, 2013, vol. 26, iss. 6, pp. 347–350. DOI: https://doi.org/10.1097/BSD.0b013e318246b163
  18. Zhao L., Chen J., Liu J., Elsamaloty L., Liu X., Li J., Elgafy H., Zhang J., Wang L. Biomechanical analysis on of anterior transpedicular screw-fixation after two-level cervical corpectomy using finite element method. Clinical Biomechanics, 2018, vol. 60, pp. 76–82. DOI: https://doi.org/10.1016/j.clinbiomech.2018.09.008
  19. Cho P. G., Ji G. Y., Park S. H., Sgin D. A. Biomechanical analysis of biodegradable cervical plates developed for anterior cervical discectomy and fusion. Asian Spine Journal, 2018, vol. 12, no. 6, pp. 1092–1099. DOI: https://doi.org/10.31616/asj.2018.12.6.1092
  20. Sharabi M., Levi-Sasson A., Wolfsan R., Wade K. R., Galsbusera F., Benayahu D., Wilke H.-J., Haj-Ali R. The mechanical role of the radial fibers network within the annulus fibrosus of the lumbar intervertebral disc: A finite elements study. Journal of Biomechanical Engineering, 2018, vol. 141, iss. 2, pp. 1–29. DOI: https://doi.org/10.1115/1.4041769
  21. Jiang Y., Sun X., Peng X., Zhao J., Zhang K. Effect of sacral slope on the biomechanical behaviour of the low lumbar spine. Experimental and Therapeutic Medicine, 2017, vol. 13, iss. 5, pp. 2203–2210. DOI: https://doi.org/10.3892/etm.2017.4251
  22. Borovkov A. I., Maslov L. B., Zhmaylo M. A., Zelinsky I. A., Voinov I. B., Keresten I. A., Mamchits D. V., Tikhilov R. M., Kovalenko A. N., Bilyk S. S., Denisov A. O. Finite element stress analysis of a total hip replacement in two-legged standing. Russian Journal of Biomechanics, 2018, vol. 22, no. 4, pp. 382–400. DOI: https://doi.org/10.15593/RJBiomech/2018,4.02
  23. Fagan M. J., Julian S., Mohsen A. M. Finite element analysis in spine research. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2002, vol. 216, iss. 5, pp. 281–298. DOI: https://doi.org/10.1243/09544110260216568
  24. Finley S. M., Brodke D. S., Spina N. T., DeDen C. A., Ellis B. J. FEBio finite element models of the human lumbar spine. Computer Methods in Biomechanics and Biomedical Engineering, 2018, vol. 21, no. 6, pp. 444–452. DOI: https://doi.org/10.1080/10255842.2018,1478967
  25. Arai Y., Takahashi H. E., Suzuki H. Stress analysis of the lumbar spine using the finite element model. In: Takahashi H. E. (eds.). Spinal Disorders in Growth and Aging. Tokyo, Springer, 1995, pp. 167–174. DOI: https://doi.org/10.1007/978-4-431-66939-5_13
  26. Shin D. S., Lee K., Kim D. Biomechanical study of lumbar spine with dynamic stabilization device using finite element method. Asian Spine Journal, 2018, vol. 12, no. 6, pp. 1092– 1099. DOI: https://doi.org/10.1016/j.cad.2007.03.005
  27. Ambati D. V., Wright E. K., Lehman R. A., Kang D. G., Wagner S. C., Dmitriev A. E. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. The Spine Journal, 2015, vol. 15, no. 6, pp. 1812–1822. DOI: https://doi.org/10.1016/j.spinee.2014.06.015
  28. Li Q. Y., Kim H.-J., Son J., Kang K.-T., Chang B.-S., Lee C.-K., Slok H. S., Yeom J. S. Biomechanical analysis of lumbar decompression surgery in relation to degenerative changes in the lumbar spine – Validated finite element analysis. Computer in Biology and Medicine, 2017, vol. 89, pp. 512–519. DOI: https://doi.org/10.1016/j.compbiomed.2017,09.003
  29. Campbell J. Q., Coombs D. J., Rao M., Rullkoetter P. J., Petrella A. J. Automated finite element meshing of the lumbar spine: Verification and Validation with 18 specimen – specific models. Journal of Biomechanics, 2016, vol. 49, iss. 13, pp. 2669–2676. DOI: https://doi.org/10.1016/j.jbiomech.2016.05.025
  30. Shirazi-Adl A., Ahmed A., Shrivastava S. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. Journal of Biomechanics, 1986, vol. 19, iss. 4, pp. 331–350. DOI: https://doi.org/10.1016/0021-9290(86)90009-6
  31. Lee K. K., Teo E. C., Fuss F. K., Vanneuville V., Qiu T. X., Ng H. W., Yang K., Sabitzer R. J. Finite-element analysis for lumbar interbody fusion under axial loading. IEEE Transactions on Biomedical Engineering, 2004, vol. 51, iss. 3, pp. 393–400. DOI: https://doi.org/10.1109/TBME.2003.820994
  32. Totoribe K., Tajima N., Chosa E. A biomechanical study of posterolateral lumbar fusion using a three-dimensional nonlinear finite element method. Journal of Orthopaedic Science, 1999, vol. 4, iss. 2, pp. 115–126. DOI: https://doi.org/10.1007/s007760050083
  33. Cho W., Cho S. K., Wu C. The biomechanics of pedicle screw-based instrumentation. The Journal of Bone & Joint Surgery (Br), 2010, vol. 92-B, no. 8, pp. 1061–1065. DOI: https://doi.org/10.1302/0301-620X.92B8.24237
  34. Sansur Ch. A., Caffes N. M., Ibrahimi D. M., Pratt N. L., Lewis E. M., Murgatroyd A. A., Cunningham B. W. Biomechanical fixation properties of cortical versus transpedicular screws in the osteoporotic lumbar spine: An in vitro human cadaveric model. Journal of Neurosurgery: Spine, 2016, vol. 25, iss. 4, pp. 467–476. DOI: https://doi.org/10.3171/2016.2.SPINE151046 
  35. Wu W., Chen C., Ning J., Sun P., Zhang J., Wu C., Bi Z., Fan J., Lai X., Ouyang J. A novel anterior transpedicular screw artificial vertebral body system for lower cervical spine fixation: a finite element study. Journal of Biomechanical Engineering, 2017, vol. 139, iss. 6, art. 061003. DOI: https://doi.org/10.1115/1.4036393
  36. Guvenc Y., Akyoldas G., Senturk S., Erbulut D., Yaman O., Ozer A. F. How to reduce stress on the pedicle screws in thoracic spine? Importance of screw trajectory: a finite element analysis. Turkish Neurosurgery, 2018, vol. 29, iss. 1, pp. 1–26. DOI: https://doi.org/10.5137/1019-5149.JTN.21895-17.2
  37. Lv C. B., Gao X., Psn X.-X., Jin H.-M., Lou X.-T., Li Sh.-M., Yan Y.-Zh., Wu C.-C., Lin Y., Ni W.-F., Wang X.-Y., Wu A.-M. Biomechanical properties of novel transpedicular transdiscal screw fixation with interbody arthrodesis technique in lumbar spine: A finite element study. Journal of Orthopaedic Translation, 2018, vol. 15, pp. 50–58. DOI: https://doi.org/10.1016/j.jot.2018.08.005
  38. Hsieh Y.-Y., Chen Ch.-H., Tsuang F.-Y.,Wu L. Ch., Lin Sh.-Ch., Chiang Ch.-J. Removal of fixation construct could mitigate adjacent segment stress after lumbosacral fusion: A finite element analysis. Clinical Biomechanics, 2017, vol. 43, pp. 115–120. DOI: https://doi.org/10.1016/j.clinbiomech.2017.02.011
Received: 
13.04.2019
Accepted: 
10.06.2019
Published: 
02.12.2019