For citation:
Snigerev B. A., Aliev K. M., Tazyukov F. K. Creeping Flow of Viscoelastic Fluid with Free Surface at Non-Isothermal Condition. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2011, vol. 11, iss. 3, pp. 89-94. DOI: 10.18500/1816-9791-2011-11-3-1-89-94
Creeping Flow of Viscoelastic Fluid with Free Surface at Non-Isothermal Condition
Numerical simulation flow of viscoelastic fluid with free surface, which is realized in entrance and output flow in extrusion die was performed. The flow of liquid is described by equations of conservation of mass, momentum and thermal energy with rheological constitutive equation of Giesekesus. On basis of finite element method the stable numerical scheme was developed to solve this problem. Different numerical experiments was performed to define the configuration of outflow jet in various regimes and construction of die. The distribution of flow velocity fields, pressure and temperature are investigated on dependence of heating the walls. Theratio of extrusion in dependence of parameters the rheological model are investigated.
- Торнер Р. В. Теоретические основы переработки полимеров. М.: Химия, 1977. 467 с.
- Раувендаль К. Экструзия полимеров. СПб.: Профессия, 2008. 768 с.
- Giesekesus H. A simple constitutive equation for polymer fluids based on the concept of deformation dependent tensorial mobility // J. Non-Newtonian Fluid. Mech. 1982. Vol. 11. P. 69–109.
- Bird R. B., Armstrong R. C., Hassager O. Dynamics of Polymeric Liquids. vol.1. Fluid Mechanics. 2nd ed. N.Y.: John Wiley and Sons, 1987. 565 с.
- Назмеев Ю. Г. Гидродинамика и теплообмен закрученных пот
- оков реологически сложных жидкостей. М.: Энергоатомиздат, 1996. 304 c.
- Математическое моделирование конвективного тепломассобмена на основе уравнений Навье – Стокса / В. И. Полежаев, А. В. Бунэ, Н. А Верезуб и др. М.: Наука, 1987. 271 c.
- Снигерев Б. А., Тазюков Ф. Х., Кутузов А. Г., Амер аль Раваш. Течение упруговязкой жидкости со свободной поверхностью // Вестн. Казан. техн. ун-та. 2007. No 1. С. 86–93.
- 1197 reads