Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Lomov I. S. Estimates of Speed of Convergence and Equiconvergence of Spectral Decomposition of Ordinary Differential Operators. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2015, vol. 15, iss. 4, pp. 405-417. DOI: 10.18500/1816-9791-2015-15-4-405-418

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
21.12.2015
Full text:
(downloads: 99)
Language: 
Russian
Heading: 
UDC: 
517.927.25

Estimates of Speed of Convergence and Equiconvergence of Spectral Decomposition of Ordinary Differential Operators

Autors: 
Lomov Igor Sergeevich, Lomonosov Moscow State University
Abstract: 

The present review contains results of V. A. Il’in and his pupils concerning an assessment of speed of convergence and equiconvergence with a trigonometrical series of Fourier of spectral decomposition of functions on root functions of linear ordinary differential operators both self-conjugate, and not self-conjugate, set on a final piece of a numerical straight line. The first theorem of V. A. Ilyin of equiconvergence of spectral decomposition for the differential operator of any order is provided. Theorems of the speed of equiconvergence of spectral decomposition at first for any self-conjugate expansions of the one-dimensional operator Schrodinger are formulated. Thus the potential of the operator can have any features on interval border. This allows us to receive new results even for all classical orthogonal polynomials. Further results for not self-conjugate operators are formulated. The review for the so-called loaded differential operators comes to the end with the theorem of equiconvergence speed. Estimates of speed of equiconvergence of decomposition are received both on any internal compact of an interval, and on the whole interval. Dependence of an assessment of speed of equiconvergence of decomposition on any compact of the main interval from distance of this compact to interval border is established.

References: 
  1. Ильин В. А. О равномерной равносходимости разложений по собственным и присоединенным функциям несамосопряженного обыкновенного дифференциального оператора и в тригонометрический ряд Фурье // ДАН СССР. 1975. Т. 223, № 3. С. 548–551.
  2. Ломов И. С. Формула среднего значения Е. И. Моисеева для обыкновенных дифференциальных операторов четного порядка с негладкими коэффициентами // Дифференц. уравнения. 1999. Т. 35, № 8. С. 1046–1057.
  3. Ильин В. А., Йо И. Оценка разности частичных сумм разложений, отвечающих двум произвольным неотрицательным самосопряженным расширениям двух операторов типа Штурма–Лиувилля, для абсолютно непрерывной функции // Дифференц. уравнения. 1979. Т. 15, № 7. С. 1175–1193.
  4. Волков В. Е., Йо И. Оценка разности частичных сумм спектральных разложений, отвечающих двум операторам Шредингера // Дифференц. уравнения. 1986. Т. 22, № 11. С. 1865–1876.
  5. Ильин В. А. Равносходимость с тригонометрическим рядом разложений по корневым функциям одномерного оператора Шредингера с комплексным потенциалом из класса L 1 // Дифференц. уравнения. 1991. Т. 27, № 4. С. 577–597.
  6. Ильин В. А. Покомпонентная равносходимость с тригонометрическим рядом разложений по корневым вектор-функциям оператора Шредингера с матричным неэрмитовым потенциалом, все элементы которого только суммируемы // Дифференц. уравнения. 1991. Т. 27, № 11. С. 1862–1879.
  7. Ильин В. А. Спектральная теория дифференциальных операторов. М. : Наука, 1991. 368 с.
  8. Ильин В. А. Избранные труды : в 2 т. Т. 2. М. : МАКС Пресс, 2008. 692 с.
  9. Никольская Е. И. Оценка разности между частичными суммами разложений абсолютно непрерывной функции по корневым функциям, отвечающим двум одномерным операторам Шредингера с комплексными потенциалами из класса L1 // Дифференц. уравнения. 1992. Т. 28, № 4. С. 598–612.
  10. Курбанов В. М. О скорости равносходимости спектральных разложений // ДАН. 1999. Т. 365, № 4. С. 444–449.
  11. Ломов И. С. О скорости равносходимости рядов Фурье по собственным функциям операторов Штурма–Лиувилля в интегральной метрике // Дифференц. уравнения. 1982. Т. 18, № 9. С. 1480– 1493.
  12. Ломов И. С. Коэффициентные условия сходимости в Lp(0,1) биортогональных разложений функций // Дифференц. уравнения. 1998. Т. 34, № 1. С. 31–39.
  13. Ломов И. С. О влиянии степени суммируемости коэффициентов дифференциальных операторов на скорость равносходимости спектральных разложений. I // Дифференц. уравнения. 1998. Т. 34, № 5. С. 619–628.
  14. Ломов И. С. О влиянии степени суммируемости коэффициентов дифференциальных операторов на скорость равносходимости спектральных разложений. II // Дифференц. уравнения. 1998. Т. 34, № 8. С. 1066–1077.
  15. Ломов И. С. О локальной сходимости биортогональных рядов, связанных с дифференциальными операторами с негладкими коэффициентами. I // Дифференц. уравнения. 2001. Т. 37, № 3. С. 328– 342.
  16. Ломов И. С. О локальной сходимости биортогональных рядов, связанных с дифференциальными операторами с негладкими коэффициентами. II // Дифференц. уравнения. 2001. Т. 37, № 5. С. 648– 660.
  17. Ломов И. С. Сходимость биортогональных разложений функций на отрезке для дифференциальных операторов высокого порядка // Дифференц. уравнения. 2005. Т. 41, № 5. С. 632–646.
  18. Афонин С. В., Ломов И. С. О сходимости биортогональных рядов, связанных с дифференциальными операторами нечетного порядка с негладкими коэффициентами // ДАН. 2010. Т. 431, № 2. С. 151–153.
  19. Ломов И. С. Зависимость оценок скорости локальной сходимости спектральных разложений от расстояния внутреннего компакта до границы // Дифференц. уравнения. 2010. Т. 46, № 10. С. 1409–1420.
  20. Ломов И. С. Нагруженные дифференциальные операторы : сходимость спектральных разложений // Дифференц. уравнения. 2014. Т. 50, № 8. С. 1077–1086.
  21. Нахушев А. М. Нагруженные уравнения и их применение. М. : Наука, 2012. 232 с.
  22. Ломов И. С., Чернов В. В. Исследование спектральных свойств одного нагруженного дифференциального оператора второго порядка // Дифференц. уравнения. 2015. Т. 51, № 7. С. 861–865.
  23. Ломов И. С., Марков А. С. Оценки скорости локальной сходимости спектральных разложений дифференциальных операторов четного порядка // Дифференц. уравнения. 2013. Т. 49, № 5. С. 557– 563.
  24. Гомилко А. М., Радзиевский Г. В. Равносходимость рядов по собственным функциям обыкновенных функционально-дифференциальных операторов // ДАН. 1991. Т. 316, № 2. С. 265–270.
  25. Хромов А. П. Спектральный анализ дифференциальных операторов на конечном интервале // Дифференц. уравнения. 1995. Т. 31, № 10. С. 1691–1696.
  26. Minkin A. M. Equiconvergence theorems for differential operators // J. Math. Sci. 1999. Vol. 96, № 6. P. 3631–3715. DOI: 10.1007/BF02172664.
  27. Садовничая И. В. Равносходимость в пространствах Соболева и Гельдера разложений по собственным функциям операторов Штурма– Лиувилля с потенциалами-распределениями // ДАН. 2011. Т. 437, № 2. С. 162–163.
  28. Хромов А. П. Теоремы равносходимости для интегро-дифференциальных и интегральных операторов // Матем. сб. 1981. Т. 114 (156), № 3. С. 378–405.
  29. Бурлуцкая М. Ш., Хромов А. П. Резольвентный подход в методе Фурье // ДАН. 2014. Т. 458, № 2. С. 138–140. DOI: 10.7868/S0869565214260041.
  30. Хромов А. П. О классическом решении одной смешанной задачи для волнового уравнения // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2015. Т. 15, вып. 1. С. 56–66.