For citation:
Kaplunov J. D., Kossovich E. L., Mukhomodyarov R. R., Sorokina O. V. Explicit Models for Flexural Edge and Interfacial Waves in Thin Isotropic Plates. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 1, pp. 56-63. DOI: 10.18500/1816-9791-2013-13-1-1-56-63, EDN: SMXXJJ
Explicit Models for Flexural Edge and Interfacial Waves in Thin Isotropic Plates
Exact solutions for problems of vibrations of isotropic thin elastic plates are presented in the work. Some basic principles of explicit dual parabolic-elliptic models for flexural edge and interfacial waves propagation are revealed. The obtained explicit models extract the contribution of the flexural wave into the full dynamic response. Also, these models reveal a dual parabolic-elliptic nature of the flexural edge and interfacial waves.
- Kaplunov J., Zakharov A., Prikazchikov D. Explicit models for elastic and piezoelastic surface waves // IMA J. of Appl. Math. 2006. Vol. 71. P. 768–782.
- Коненков Ю. К. Об изгибной волне «рэлеевского» типа // Акустический журнал. 1960. Т. 6, вып. 1. С. 124–126. [Konenkov Yu. K. A Rayleigh-Type Flexural Wave // Soviet Physics. Acoustics. 1960. Vol. 6, iss. 1. P. 122–123.]
- Lord Rayleigh On waves propagated along the plane surface of an elastic solid // Proc. of the London Math. Soc. 1885. Vol. 17, № 253. P. 4–11.
- Зильберглейт А. С, Суслова И. Б. Контактные волны изгиба в тонких пластинах // Акустический журнал. 1983. Т. 29, вып. 2. С. 186–191. [Zilbergleit A. S., Suslova I. B. Contact Flexural Waves in Thin Plates // Soviet Physics. Acoustics. 1983. Vol. 29, iss. 2. P. 108–111.]
- 1198 reads