Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Kamenskiy A. V. Finite Element Model of the Carotid Bifurcation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2007, vol. 7, iss. 1, pp. 48-54. DOI: 10.18500/1816-9791-2007-7-1-48-54

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
14.05.2007
Full text:
(downloads: 136)
Language: 
Russian
Heading: 
UDC: 
539.3

Finite Element Model of the Carotid Bifurcation

Autors: 
Kamenskiy A. V., Saratov State University
Abstract: 

A fluid-solid interaction problem of a pulsation of the human carotid bifurcation was solved using finite element method. Hyperelastic orthotropic wall model that accounts for the carotid histological structure and in-vivo vessel geometry obtained from the CT-imaging were utilized. In-vivo blood flow boundary conditions for the problem were determined using Doppler Ultrasound. Results of the modeling were analyzed for correlation between zones of low wall shear stress (WSS) for blood flow, high cyclic strain (CS) and high effective stress (ES) for vessel wall with the zones of atherosclerosis formation on the CT-angiogram.

Key words: 
References: 
  1. Holzapfel G.A., Gasser T.C. A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models // J. of Elasticity. 2000. V. 61. P. 1–48.
  2. Rhodin J.A.G. Architecture of the Vessel Wall // Handbook pf Physiology, The Cardiovascular System / Eds. H.V. Sparks, Jr.D.F. Bohr, A.D. Somlyo, S.R. Geiger V. 2. Amer. Physiological Society. Bethesda. Maryland, 1980. P. 1–31.
  3. Weizsacker H.W., Pinto J.G. Isotropy and Anisotropy of the Arterial Wall // J. of Biomech. 1988. V.21. P. 477–487.
  4. Delfino A. Analysis of Stress Field in a Model of the Human Carotid Bifurcation. PhD thesis #1599. Lausanne, 1996.
  5. Spencer A.J.M. Deformations of Fibre-Reinforced Materials. Oxford. Clarendon Press, 1972.
  6. Касьянов В.А., Кнетс И.В. Функция энергии деформации крупных кровеносных сосудов человека // Механика полимеров. 1974. Т. 1. С. 122–128.
  7. Humphrey J.D., Strumpf R.K., Yin F.C.P. Determination of a Constitutive Relation for Passive Myocardium // J. of Biomechanical Engineering. 1990. V. 112. P. 333–346.
  8. Fung Y.C., Fronek K, Patitucci P. Pseudoelasticity of Arteries and the Choice of its Mathematical Expression // Amer. J. Physiol. 1979. V. 237. P. H620–H631.
  9. Harington I., de Botton G., Gasser T.C., Holzapfel G.A. How to Incorporate Collagen Fibers Orientations in an Arterial Bifurcation? // Proc. of the 3rd IASTED Int Conference on Biomechanics. September 7–9. 2005. Benidorm, Spain, 2006.
  10. Leung JH, Wright AR, Cheshire N. et al. Fluid Structure Interaction of Patient Specific Abdominal Aortic Aneurysms: a Comparison with Solid Stress Models // BioMedical Engineering OnLine. 2006. V. 5:33 doi:10.1186/1475–925X–5–33.
  11. Younis H.F., Kaazempur–Mofrad M.R., Chan R.C. et al. Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and its Consequences for Atherosclerosis: Investigation of Inter-Individual Variation // Biomechan. Model Mechanobiol. 2004. V. 3. P. 17–32.
  12. Delfino A., Stergiopulos N., Moore J.E. et al. Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation // J. of Biomech. 1997. V. 30, № 8. P. 777–786.
  13. Malek A.M., Alper S.L., Izumo S. Hemodynamics Shear Stress and its Role in Atherosclerosis // JAMA. 1999. V. 282, № 21. P. 2035–2042.
  14. Howard B.V., Macarak E.I., Gunson D., Kefalides N.A. Characterization of the Collagen Synthesized by Endothelial Cells in Culture // Proc. Nat. Acad. Sci. USA. 1976. V. 73. P. 2361–2364.
  15. Haust M.D. Arterial Endothelium and its Potentials. N.Y.: Plenum Press, 1977. P. 34.
  16. Weinbaum S., Tzeghai G., Ganatos P. et al. Effect of Cell Turnover and Leaky Junctions on Arterial Macromolecular Transport // Amer. J. Physiol. 1985. V. 248. P. H945-H960.
  17. Tropea BI, Schwarzacher SP, Chang A et al. Reduction of Aortic Wall Motion Inhibits HypertensionMediated Experimental Atherosclerosis // Artherioscler. Thromb. Vasc. Biol. 2000. V. 20. P. 2127–2133.