Для цитирования:
Каменский А. В. Моделирование каротидной бифуркации методом конечного элемента // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2007. Т. 7, вып. 1. С. 48-54. DOI: 10.18500/1816-9791-2007-7-1-48-54
Моделирование каротидной бифуркации методом конечного элемента
Методом конечного элемента решена совместная задача гидродинамики и теории упругости о пульсации каротидной би-фуркации человека. Использована ортотропная гиперупругая модель, учитывающая анатомическое строение стенки. Получено решение для геометрии сосуда, восстановленной по in-vivo КТ-ангиограмме. Граничные условия для жидкости определя-лись in-vivo при помощи ультразвукового аппарата Доплера. Результаты моделирования были проанализированы на предмет корреляции зон низкого сдвигового напряжения (WSS) для жидкости, высоких циклических деформаций (CS) и высокого эффективного напряжения (ES) для стенки с зонами атеросклеротического поражения на КТ-ангиограмме.
- Holzapfel G.A., Gasser T.C. A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models // J. of Elasticity. 2000. V. 61. P. 1–48.
- Rhodin J.A.G. Architecture of the Vessel Wall // Handbook pf Physiology, The Cardiovascular System / Eds. H.V. Sparks, Jr.D.F. Bohr, A.D. Somlyo, S.R. Geiger V. 2. Amer. Physiological Society. Bethesda. Maryland, 1980. P. 1–31.
- Weizsacker H.W., Pinto J.G. Isotropy and Anisotropy of the Arterial Wall // J. of Biomech. 1988. V.21. P. 477–487.
- Delfino A. Analysis of Stress Field in a Model of the Human Carotid Bifurcation. PhD thesis #1599. Lausanne, 1996.
- Spencer A.J.M. Deformations of Fibre-Reinforced Materials. Oxford. Clarendon Press, 1972.
- Касьянов В.А., Кнетс И.В. Функция энергии деформации крупных кровеносных сосудов человека // Механика полимеров. 1974. Т. 1. С. 122–128.
- Humphrey J.D., Strumpf R.K., Yin F.C.P. Determination of a Constitutive Relation for Passive Myocardium // J. of Biomechanical Engineering. 1990. V. 112. P. 333–346.
- Fung Y.C., Fronek K, Patitucci P. Pseudoelasticity of Arteries and the Choice of its Mathematical Expression // Amer. J. Physiol. 1979. V. 237. P. H620–H631.
- Harington I., de Botton G., Gasser T.C., Holzapfel G.A. How to Incorporate Collagen Fibers Orientations in an Arterial Bifurcation? // Proc. of the 3rd IASTED Int Conference on Biomechanics. September 7–9. 2005. Benidorm, Spain, 2006.
- Leung JH, Wright AR, Cheshire N. et al. Fluid Structure Interaction of Patient Specific Abdominal Aortic Aneurysms: a Comparison with Solid Stress Models // BioMedical Engineering OnLine. 2006. V. 5:33 doi:10.1186/1475–925X–5–33.
- Younis H.F., Kaazempur–Mofrad M.R., Chan R.C. et al. Hemodynamics and Wall Mechanics in Human Carotid Bifurcation and its Consequences for Atherosclerosis: Investigation of Inter-Individual Variation // Biomechan. Model Mechanobiol. 2004. V. 3. P. 17–32.
- Delfino A., Stergiopulos N., Moore J.E. et al. Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation // J. of Biomech. 1997. V. 30, № 8. P. 777–786.
- Malek A.M., Alper S.L., Izumo S. Hemodynamics Shear Stress and its Role in Atherosclerosis // JAMA. 1999. V. 282, № 21. P. 2035–2042.
- Howard B.V., Macarak E.I., Gunson D., Kefalides N.A. Characterization of the Collagen Synthesized by Endothelial Cells in Culture // Proc. Nat. Acad. Sci. USA. 1976. V. 73. P. 2361–2364.
- Haust M.D. Arterial Endothelium and its Potentials. N.Y.: Plenum Press, 1977. P. 34.
- Weinbaum S., Tzeghai G., Ganatos P. et al. Effect of Cell Turnover and Leaky Junctions on Arterial Macromolecular Transport // Amer. J. Physiol. 1985. V. 248. P. H945-H960.
- Tropea BI, Schwarzacher SP, Chang A et al. Reduction of Aortic Wall Motion Inhibits HypertensionMediated Experimental Atherosclerosis // Artherioscler. Thromb. Vasc. Biol. 2000. V. 20. P. 2127–2133.
- 1110 просмотров