#### For citation:

Ganesamoorthy K., Lakshmi Priya S. Forcing total outer connected monophonic number of a graph. *Izvestiya of Saratov University. Mathematics. Mechanics. Informatics*, 2022, vol. 22, iss. 3, pp. 278-286. DOI: 10.18500/1816-9791-2022-22-3-278-286, EDN: IMTPKR

# Forcing total outer connected monophonic number of a graph

For a connected graph $G = (V,E)$ of order at least two, a subset $T$ of a minimum total outer connected monophonic set $S$ of $G$ is a *forcing total outer connected monophonic subset* for $S$ if $S$ is the unique minimum total outer connected monophonic set containing $T$. A forcing total outer connected monophonic subset for $S$ of minimum cardinality is a *minimum forcing total outer connected monophonic subset* of $S$. The *forcing total outer connected monophonic number* $f_{tom}(S)$ in $G$ is the cardinality of a minimum forcing total outer connected monophonic subset of $S$. The *forcing total outer connected monophonic number* of $G$ is $f_{tom}(G) = \min\{f_{tom}(S)\}$, where the minimum is taken over all minimum total outer connected monophonic sets $S$ in $G$. We determine bounds for it and find the forcing total outer connected monophonic number of a certain class of graphs. It is shown that for every pair $a,b$ of positive integers with $0 \leq a < b$ and $b \geq a+4$, there exists a connected graph $G$ such that $f_{tom}(G) = a$ and $cm_{to}(G) = b$, where $cm_{to}(G)$ is the total outer connected monophonic number of a graph.

- Buckley F., Harary F.
*Distance in Graphs*. Redwood City, CA, Addison-Wesley, 1990. 335 p. - Harary F.
*Graph Theory*. Addision-Wesley, 1969. 274 p. - Costa E. R., Dourado M. C., Sampaio R. M. Inapproximability results related to monophonic convexity.
*Discrete Applied Mathematics*, 2015, vol. 197, pp. 70–74. https://doi.org/10.1016/j.dam.2014.09.012 - Dourado M. C., Protti F., Szwarcfiter J. L. Algorithmic aspects of monophonic convexity.
*Electronic Notes in Discrete Mathematics*, 2008, vol. 30, pp. 177–182. https://doi.org/10.1016/j.endm.2008.01.031 - Dourado M. C., Protti F., Szwarcfiter J. L. Complexity results related to monophonic convexity.
*Discrete Applied Mathematics*, 2010, vol. 158, pp. 1268–1274. https://doi.org/10.1016/j.dam.2009.11.016 - Paluga E. M., Canoy S. R. Monophonic numbers of the join and composition of connected graphs.
*Discrete Mathematics*, 2007, vol. 307, iss. 9–10, pp. 1146–1154. https://doi.org/10.1016/j.disc.2006.08.002 - Santhakumaran A. P., Titus P., Ganesamoorthy K. On the monophonic number of a graph.
*Journal of Applied Mathematics & Informatics*, 2014, vol. 32, iss. 1–2, pp. 255–266. https://doi.org/10.14317/JAMI.2014.255 - Ganesamoorthy K., Murugan M., Santhakumaran A. P. Extreme-support total monophonic graphs.
*Bulletin of the Iranian Mathematical Society*, 2021, vol. 47, pp. 159–170. https://doi.org/10.1007/s41980-020-00485-4 - Ganesamoorthy K., Murugan M., Santhakumaran A. P. On the connected monophonic number of a graph.
*International Journal of Computer Mathematics: Computer Systems Theory*, 2022, vol. 7, iss. 2, pp. 139–148. https://doi.org/10.1080/23799927.2022.2071765 - Santhakumaran A. P., Titus P., Ganesamoorthy K., Murugan M. The forcing total monophonic number of a graph.
*Proyecciones*, 2021, vol. 40, iss. 2, pp. 561–571. https://doi.org/10.22199/issn.0717-6279-2021-02-0031 - Ganesamoorthy K., Lakshmi Priya S. The outer connected monophonic number of a graph.
*Ars Combinatoria*, 2020, vol. 153, pp. 149–160. - Ganesamoorthy K., Lakshmi Priya S. Further results on the outer connected monophonic number of a graph.
*Transactions of National Academy of Sciences of Azerbaijan. Series of Physical-Technical and Mathematical Sciences, Issue Mathematics*, 2021, vol. 41, iss. 4, pp. 51–59. - Ganesamoorthy K., Lakshmi Priya S. Extreme outer connected monophonic graphs.
*Communications in Combinatorics and Optimization*, 2022, vol. 7, iss. 2, pp. 211–226. https://dx.doi.org/10.22049/cco.2021.27042.1184

- 934 reads