Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Vdovin A. Y. Imitation tools for automated systems used in small arms testing. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 2, pp. 246-258. DOI: 10.18500/1816-9791-2021-21-2-246-258, EDN: FDGIEE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.05.2021
Full text:
(downloads: 1337)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
681.518.3
EDN: 
FDGIEE

Imitation tools for automated systems used in small arms testing

Autors: 
Vdovin Aleksey Yu., Kalashnikov Izhevsk State Technical University
Abstract: 

Currently, various imitators (imitation tools) are widely used to test various equipment and evaluate its parameters. The main goal of developing new imitation tools in the field of creating automated systems used in testing small arms is to accelerate and cheapen the development and implementation of such systems. The article discusses the general structure of information-measuring systems used in testing small arms based on acoustic and optical blocking devices, as well as on the basis of a video camera. Based on the considered structures, a classification of imitation tools (IT) is proposed: IT of digital data array (software), IT of analog signals of system sensors (hardware and software-hardware), IT of initiating effects on sensitive elements of the system (hardware and software-hardware). A detailed analysis of the comparative advantages and disadvantages of imitators of these types is carried out, possible difficulties in their creation, restrictions on the use of one or another implementation variety, as well as prospects for their development and application are described. 

References: 
  1. Krat N. M., Savin A. A., Sharygin G. S. Test equipment for autonomous navigation system of space vehicles. Proceedings of TUSUR University, 2014, no. 1 (31), pp. 28–32 (in Russian).
  2. Krasnenko S. S., Nedorezov D. A., Kashkin V. B., Hazagarov Yu. G., Pichkalev A. V. Multi-channel digital synthesis of radio navigation signals simulator. Journal of Siberian Federal University. Engineering & Technologies, 2013, vol. 6, no. 5, pp. 521–526 (in Russian).
  3. Antоnоv K. A., Grigоriev V. O., Suсhkоv V. В., Fabrichny M. G. Questions of implementation of the simulator of input signals of near-field radar systems for semi-natural modeling of interference from the underlying surface. Herald of the Bauman Moscow State Technical University. Series: Instrument Engineering, 2006, no. 4 (65), pp. 45–58 (in Russian).
  4. Dolgov A. N., Raskita M. A. Sonar signal simulator designed for debugging research sonar equipment used for monitoring aquatic bioresourses. Izvestiya Yuzhnogo federal’nogo universiteta. Tekhnicheskie nauki, 2011, no. 9 (122), pp. 52–56 (in Russian).
  5. Kostenkov S. Y., Sidorova M. A. Features of development software simulator of electrophysiological signals. XXI century: Resumes of the Past and Challenges of the Present plus. Series: Engineering Sciences. Information Technologies, 2013, no. 10 (14), pp. 210–214 (in Russian).
  6. Kopylov E. Iu. Simulator of signals for electromagnetic prospecting measuring system. Herald of KRSU, 2016, vol. 16, no. 5, pp. 146–150 (in Russian).
  7. Afanas’eva N. Ju., Verkienko Ju. V., Kazakov V. S., Korobejnikov V. V. Light target. Patent RU 2213320 C1.
  8. Verkienko Ju. V., Kazakov V. S., Kazakov S. V., Korobejnikov V. V. Method for determination of exterior ballistic characteristics of flight of bullets and projectiles. Patent RU 2231738 C2.
  9. Petukhov K. Iu. Algorithms for processing analog signals for digital measurements in information and measurement systems for small arms. Diss. Cand. Sci. (Tech.). Izhevsk, 2003. 156 р. (in Russian).
  10. Verkienko Ju. V., Kazakov V. S., Petukhov K. Ju., Afanas’ev A. N. Device measuring translation, velocity, acceleration and rate of motion of object. Patent RU 2223505 C1.
  11. Vdovin A. Yu., Markov E. M., Kornilov I. G. Modern automated system for evaluation of movement velocity of firearm bolt. Intelligent Systems in Manufacturing, 2017, vol. 15, no. 3, pp. 82–87 (in Russian). https:doi.org/10.22213/2410-9304-2017-3-82-87
  12. Markov E. M. Development of methods and means of controlling parameters of shotguns using a camera. Diss. Cand. Sci. (Tech.). Izhevsk, 2011. 171 p. (in Russian).
  13. Konovalov A. A., Nikolaev Yu. V. Vneshnjaja ballistika [External Ballistic]. Moscow, CNII informacii, 1974. 228 p. (in Russian).
  14. Zlatin N. A., Krasil’shhikov A. P., Mishin G. I., Popov N. N. Ballisticheskie ustanovki i ih primenenie v jeksperimental’nyh issledovanijah [Ballistic Installations and Their Application in Experimental Research]. Moscow, Nauka, 1974. 344 p. (in Russian).
  15. Dmitrievskij A. A., Lysenko L. N., Bogodistov S. S. Vneshnjaja ballistika [External Ballistic]. Moscow, Mashinostroenie, 1991. 640 p. (in Russian).
  16. Ivanov A. P., Koliev M. R. Device for measurement of speed and acceleration of thrown object. Patent RU 2285268 C1.
  17. Afanas’eva N. Yu., Afanas’ev V. A., Verkienko Ju. V., Kazakov V. S., Korobejnikov V. V. Shooting gallery. Patent RU 2388990 C2.
  18. Afanas’eva N. Yu., Afanas’ev V. A., Verkienko Ju. V. Device for determining outer-ballistic parametres in invariant light target combined with ballistic track. Patent RU 2388991 C2.
  19. Bliznjuk A. M., Kochnev Ju. V., Khoroshko A. N. Method of defining bullet and shell position coordinates in space and time. Patent RU 2470252 C1.
  20. Vdovin A. Yu. Development of a system based on light screens for determining external ballistic parameters. Diss. Cand. Sci. (Tech.). Izhevsk, 2010. 157 p. (in Russian).
  21. Vdovin A. Yu. Digital filtering in automated systems for determining external ballistic parameters. In: Informatsionnye tekhnologii v promyshlennosti i obrazovanii [Information Technologies in Industry and Education: Collected Papers Scientific and Technical Conf.]. Izhevsk, Izd-vo IzhGTU, 2009, pp. 52–55 (in Russian).
  22. Vdovin A. Yu., Kazakov V. S., Korobeynikov V. V., Kiselev V. A. Optical sensor modeling in micro-cap medium for information-measuring system on basis of light screens. Bulletin of Kalashnikov ISTU, 2012, no. 3, pp. 108–110 (in Russian).
  23. Vdovin A. Yu., Danilov S. A. Light screen optical sensor modeling in Qucs. In: Informatsionnye tekhnologii v nauke, promyshlennosti i obrazovanii [Information Technologies in Industry and Education: Collected Papers Scientific and Technical Conf.]. Izhevsk, Izd-vo IzhGTU, 2013, pp. 130–133 (in Russian).
  24. Zykina A. I., Vdovin A. Yu. Simulation of the process of crossing the light screen by the rotation body. In: Informatsionnye tekhnologii v nauke, promyshlennosti i obrazovanii [Information Technologies in Industry and Education: Collected Papers Scientific and Technical Conf.]. Izhevsk, Izd-vo IzhGTU, 2014, pp. 247–251 (in Russian).
  25. Aphanasiev V. A. Improvement of models and hardware and software for controlling products by external ballistic parameters. Diss. Cand. Sci. (Tech.). Izhevsk, 2013. 159 p. (in Russian).
  26. Sharipov R. M. Light screen for determining the coordinates of the bullet passage and a set of light screen elements. Patent for useful model RU 109284 U1.
  27. Afanas’eva N. Yu. Information-measuring system based on light screens for testing small arms. Diss. Cand. Sci. (Tech.). Izhevsk, 2003. 127 p. (in Russian).
  28. Afanas’eva N. Yu., Afanas’ev V. A.,Verkienko Ju. V., Kazakov V. S., Korobejnikov V. V. Device for determination of exterior ballistic parameters of projectile component with the aid of light screens. Patent RU 2279035 C1.
  29. Aphanasiev V. A., Vdovin A. U., Kornilov I. G. Weight functions of light shield and the signal at the input of optical sensor at the intersection of the bullets of light shield. Journal of Measurements in Engineering, 2019, vol. 7, iss. 2, pp. 74–83. https:doi.org/10.21595/jme.2019.20441
  30. Kazakov V. S., Korobeynikov V. V. Acoustic target with portable sensor. Intelligent Systems in Manufacturing, 2013, no. 1, pp. 127–129 (in Russian).
  31. Egorov S. F., Korobeynikova I. V., Korobeynikov A. V. Research for the influence of mathematical model invariant to working position on the accuracy of an acoustic target. Intelligent Systems in Manufacturing, 2015, vol. 13, no. 3, pp. 45–49 (in Russian).
  32. Kazakov S. V. Development and research of an information and measurement system based on acoustic targets for testing small arms in open areas. Thesis Diss. Cand. Sci. (Tech.). Izhevsk, 2002. 19 p. (in Russian).
  33. Vdovin A. Yu., Pokushev A. N., Maksimova A. V. Creation on the basis of the sound card the simulator signals of the system for determining of mechanisms movement parameters of weapons. Informacionnye tehnologii. Problemy i reshenija [Information Technology. Problems and Solutions: Materials of the International Scientific and Practical Conference], Ufa, 2018, no. 1 (5), pp. 67–71 (in Russian).
  34. Vdovin A. Y., Markov E. M., Maksimova A. V., Pokushev A. N. Creation of automated system for determining the external ballistics parameters based on the sound card of signal imitator for optical sensors. Intelligent Systems in Manufacturing, 2016, vol. 14, no. 3, pp. 52–55 (in Russian).
  35. Vdovin A. Yu., Khamidullin R. R., Shadrin V. V. Initiating impacts imitator on the sensors of the optical-electronic system used in small arms testing. Priborostroenie v XXI veke –2019. Integracija nauki, obrazovanija i proizvodstva [Instrumentation in the 21 century – 2019. Integration of science, education and production: Proc. All-Russ. Scientific and Technical Conf.]. Izhevsk, IzhGTU imeni M. T. Kalashnikova Publ., 2019, pp. 23–29 (in Russian).
  36. V’jukov N. N., Akimov A. V., Averin N. N. Projectile velocity-measuring device. Patent RU 2089917 C1.
  37. Zubankov A. V., Nikolaev V. A., Kortjukov I. I., Batarev S. V., Strabykin V. V. Method to start recording systems and meter of average speed of thrown object. Patent RU 2525687 C1.
  38. Ashikhmin A. S., Poznukhov A. V. Mode of transferring a charge on a metallic bullet. Patent RU 2251113 C1.
  39. Zakharov V. N., Romashkin V. V., Rublev N. I. Method for determination of coordinates of target hits for small arms and device for its realization. Patent RU 2255294 C1.
Received: 
17.02.2020
Accepted: 
05.10.2020
Published: 
31.05.2021