Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Sadyrin E. V. Influence of a polymeric infiltrant on the density of enamel white spot lesions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 1, pp. 83-94. DOI: 10.18500/1816-9791-2023-23-1-83-94, EDN: MMVQYW

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 977)
Article type: 

Influence of a polymeric infiltrant on the density of enamel white spot lesions

Sadyrin Evgenii Valerievich, Don State Technical University

In modern dental practice,  treatment of early stages of caries is possible using minimally invasive intervention. In this work, using X-ray computed microtomography (micro-CT), an ex vivo non-destructive study of the density of white spot lesions was carried out before and after the application of a polymer infiltrant. The use of a calibration phantom during microtomography of samples, as well as the technique of segmenting regions of interest on caries foci after reconstruction of microtomograms of teeth, made it possible to study the quantitative effect of the infiltrant on pathologically altered enamel.

This work was supported by the Russian Science Foundation (project No. 19-19-00444). The experiments were carried out in the resource center for collective use of the Research and Education Center “Materials”, Don State Technical University. The author thanks Professor S. Yu. Maksyukov and D. V. Yogina (Rostov State Medical University, Rostov-on-Don) for providing the samples and carrying out the infiltration protocol on them.
  1. Roopa K. B., Pathak S., Poornima P., Neena, I. E. White spot lesions: A literature review. Journal of Pediatric Dentistry, 2015, vol. 3, iss. 1, pp. 1–7. https://doi.org/10.4103/2321-6646.151839
  2. Sadyrin E. V., Yogina D. V., Vasiliev A. S., Aizikovich S. M. Evaluation of the influence of white spot lesion on the mechanical properties of human tooth enamel and dentine. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 3, pp. 346–359 (in Russian). https://doi.org/10.18500/1816-9791-2022-22-3-346-359, EDN: ZTLZZG
  3. Sadyrin E., Swain M., Mitrin B., Rzhepakovsky I., Nikolaev A., Irkha V., Yogina D., Lyanguzov N., Maksyukov S., Aizikovich S. Characterization of enamel and dentine about a white spot lesion: Mechanical properties, mineral density, microstructure and molecular composition. Nanomaterials, 2020, vol. 10, iss. 9, pp. 1889. https://doi.org/10.3390/nano10091889
  4. Huang T. T., Jones A. S., He L. H., Darendeliler M. A., Swain M. V. Characterisation of enamel white spot lesions using X-ray micro-tomography. Journal of Dentistry, 2007, vol. 35, iss. 9, pp. 737–743. https://doi.org/10.1016/j.jdent.2007.06.001
  5. Marya A., Venugopal A., Karobari M. I., Rokaya D. White spot lesions: A serious but often ignored complication of orthodontic treatment. The Open Dentistry Journal, 2022, vol. 16, iss. 1, pp. 1–4. https://doi.org/10.2174/18742106-v16-e2202230
  6. Chen L. R., Lai C. L., Chen J. P., Kao C. T. The effect of probiotics use on salivary cariogenic bacteria in orthodontic patients with various caries risk status. Nutrients, 2022, vol. 14, iss. 15, pp. 3196. https://doi.org/10.3390/nu14153196
  7. Nyvad B., Crielaard W., Mira A., Takahashi N., Beighton D. Dental caries from a molecular microbiological perspective. Caries Research, 2013, vol. 47, iss. 2, pp. 89–102. https://doi.org/10.1159/000345367
  8. Yu O. Y., Zhao I. S., Mei M. L., Lo E. C. M., Chu C. H. A review of the common models used in mechanistic studies on demineralization-remineralization for cariology research. Dentistry Journal, 2017, vol. 5, iss. 20, pp. 20. https://doi.org/10.3390/dj5020020
  9. Guerra F., Mazur M., Nardi G. M., Corridore D., Pasqualotto D., Rinado F., Ottolenghi L. Dental hypomineralized enamel resin infiltration. Clinical indications and limits. Senses and Sciences, 2015, vol. 2, iss. 4, pp. 1–5. https://doi.org/10.14616/sands-2015-4-135139
  10. Sadyrin E. V., Kislyakov E. A., Karotkiyan R. V., Yogina D. V., Drogan E. G., Swain M. V., Maksyukov S. Yu., Nikolaev A. L., Aizikovich S. M. Influence of citric acid concentration and etching time on enamel surface roughness of prepared human tooth: In vitro study. In: Altenbach H., Brunig M., Kowalewski Z. (eds.) Plasticity, Damage and Fracture in Advanced Materials. Advanced Structured Materials, vol. 121. Cham, Springer, 2020, pp. 135–150. https://doi.org/10.1007/978-3-030-34851-9_8
  11. Hicks J., Garcia-Godoy F., Flaitz C. Biological factors in dental caries: Role of remineralization and fluoride in the dynamic process of demineralization and remineralization (part 3). Journal of Clinical Pediatric Dentistry, 2004, vol. 28, iss. 3, pp. 203–214. https://doi.org/10.17796/jcpd.28.3.w0610427l746j34n
  12. Gomez J. Detection and diagnosis of the early caries lesion. BMC Oral Health, 2015, vol. 15 (Suppl. 1), S3. https://doi.org/10.1186/1472-6831-15-S1-S3
  13. Basaran G., Veli I., Basaran E. G. Non-cavitated approach for the treatment of white spot lesions: A case report. International Dental Research, 2011, vol. 1, iss. 2, pp. 65–69. https://doi.org/10.5577/intdentres.2011.vol1.no2.5
  14. Yuan H., Li J., Chen L., Cheng L., Cannon R. D., Mei L. Esthetic comparison of white-spot lesion treatment modalities using spectrometry and fluorescence. The Angle Orthodontist, 2014, vol. 84, iss. 2, pp. 343–349. https://doi.org/10.2319/032113-232.1
  15. Eckstein A., Helms H. J., Knosel M. Camouflage effects following resin infiltration of postorthodontic white-spot lesions in vivo: One-year follow-up. The Angle Orthodontist, 2015, vol. 85, iss. 3, pp. 374–380. https://doi.org/10.2319/050914-334.1
  16. Kim S., Kim E. Y., Jeong T. S., Kim J. W. The evaluation of resin infiltration for masking labial enamel white spot lesions. International Journal of Paediatric Dentistry, 2011, vol. 21, iss. 4, pp. 241–248. https://doi.org/10.1111/j.1365-263X.2011.01126.x
  17. Sadyrin E. V., Yogina D. V., Swain M. V., Maksyukov S. Yu., Vasiliev A. S. Efficacy of dental materials in terms of apparent mineral density restoration: Composite resin, glass ionomer cement and infiltrant. Composites Part C: Open Access, 2021, vol. 6, pp. 100192. https://doi.org/10.1016/j.jcomc.2021.100192
  18. Sadyrin E. V., Yogina D. V., Volkov S. S., Aizikovich S. M. Evaluation of density and microgeometrical characteristics of glass-ionomer cement and composite resin fillings: A biomechanical ex vivo study. Russian Journal of Biomechanics, 2022, vol. 26, iss. 2, pp. 67–73 (in Russian). https://doi.org/10.15593/RZhBiomeh/2022.2.06 
  19. Borges A. B., Caneppele T. M. F., Masterson D., Maia L. C. Is resin infiltration an effective esthetic treatment for enamel development defects and white spot lesions? A systematic review. Journal of Dentistry, 2017, vol. 56, pp. 11–19. https://doi.org/10.1016/j.jdent.2016.10.010
  20. Fisher J., Glick M. A new model for caries classification and management: The FDI World Dental Federation caries matrix. Journal of the American Dental Association, 2012, vol. 143, iss. 6, pp. 546–551. https://doi.org/10.14219/jada.archive.2012.0216
  21. Alyahya A., Alqareer A., Swain M. Microcomputed tomography calibration using polymers and minerals for enamel mineral content quantitation. Medical Principles and Practice, 2019, vol. 28, iss. 3, pp. 247–255. https://doi.org/10.1159/000499186
  22. Hikita K., Van Meerbeek B., De Munck J., Ikeda T., Van Landuyt K., Maida T., Lambrechts P., Peumans M. Bonding effectiveness of adhesive luting agents to enamel and dentin. Dental Materials, 2007, vol. 23, iss. 1, pp. 71–80. https://doi.org/10.1016/j.dental.2005.12.002
  23. Swain M. V., Xue J. State of the art of micro-CT applications in dental research. International Journal of Oral Science, 2009, vol. 1, iss. 4, pp. 177–188. https://doi.org/10.4248/IJOS09031
  24. Sadyrin E. V. Correlating the mechanical properties of the mineral density of brown spot lesion in dentine using nanoindentation and X-ray micro-tomography. In: Altenbach H., Eremeyev V. A., Vasiliev A. S. (eds.) Advanced Materials Modelling for Mechanical, Medical and Biological Applications. Advanced Structured Materials, vol. 155. Cham, Springer, 2022, pp. 389–398. https://doi.org/10.1007/978-3-030-81705-3_21
  25. Huang T. T. Y., He L. H., Darendeliler M. A., Swain M. V. Correlation of mineral density and elastic modulus of natural enamel white spot lesions using X-ray microtomography and nanoindentation. Acta Biomaterialia, 2010, vol. 6, iss. 12, pp. 4553–4559. https://doi.org/10.1016/j.actbio.2010.06.028
  26. Sadyrin E. V., Mitrin B. I., Yogina D. V., Swain M. V. Preliminary study of distribution of mechanical properties and mineral density by depth of liquid saturated carious dentine. IOP Conference Series: Materials Science and Engineering, 2021, vol. 102, Art. 012056. https://doi.org/10.1088/1757-899X/1029/1/012056