Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Glukhova O. E., Kolesnikova A. S., Slepchenkov M. M., Savostianov G. V. Influence Topology on Mechanical Properties of Carbon Nanotorov: Predictive Modeling. Izv. Sarat. Univ. Math. Mech. Inform., 2014, vol. 14, iss. 4, pp. 448-455. DOI: 10.18500/1816-9791-2014-14-4-448-455

Published online: 
Full text:
(downloads: 49)

Influence Topology on Mechanical Properties of Carbon Nanotorov: Predictive Modeling

Glukhova Ol'ga Evgen'evna, Saratov State University
Kolesnikova Anna Sergeevna, Saratov State University
Slepchenkov Mikhail Mikhailovich, Saratov State University
Savostianov Georgy Vasil'evich, Saratov State University

In this paper the results of theoretical studies of the effect of topological features of the mechanical properties of carbon nanotori are presented. Numerical analysis of the atomic structure and properties of the objects was carried out by the molecular dynamics and quantum tight-binding method. Conclusions about the stability of the investigated nanotori were made on the base of the results of calculations of the enthalpy of the reaction. The first calculations of the elastic modulus carbon nanotori are presented.

  1. Sano M., Kamino A., Okamura J., Shinkai S. Ring Closure of Carbon Nanotubes // Science. 2001. Vol. 293, № 5533. P. 1299–1301.
  2. Avron J. E., Berger J. Tiling rules for toroidal molecules // Phys. Rev. A. 1995. Vol. 51, iss. 2. P. 1146–1159. 
  3. Cruz-Torres A.,Castillo-Alvarado F. DE L., OrtizLopez J., Arellano J. S. Arellano Hydrogen Storage Inside a Toroidal Carbon Nanostructure C120: ensity Functional Theory Computer Simulation // Intern. J. Quantum Chemistry. 2010. Vol. 110. P. 2495–2508.
  4. Haddon R. C. Electronic properties of carbon toroids // Nature. 1997. Vol. 388, № 6637. P. 31–32.
  5. Liu L., Guo G. Y.,Jayanthi C. S., Wu S. Y. Colossal Paramagnetic Moments in Metallic Carbon Nanotori // Phys. Rev. Let. 2002. Vol. 88, iss. 21. P. 217206.
  6. Rodriguez-Manzo J. A., Lopez-Urias F., Terrones M., Terrones H. Magnetism in Corrugated Carbon Nanotori : The Importance of Symmetry, Defects, and Negative Curvature // Nano Let. 2004. Vol. 4, iss. 11. P. 2179–2183.
  7. Lin M. F., Chuu D. S. Persistent currents in toroidal carbon nanotubes // Phys. Rev. B. 1998. Vol. 57, № 11. P. 6731–6737.
  8. Liu C. P., Chen H. B., Ding J. W. Magnetic response of carbon nanotori : the importance of curvature and disorder // J. Physics : Condensed Matter. 2008. Vol. 20, № 1. P. 015206.
  9. Liu C. P., Xu N. Magnetic response of chiral carbon nanotori : The dependence of torus radius // Physica B : Condensed Matter. 2008. Vol. 403, № 17. P. 2884–2887.
  10. Wang X., Wang Z., Liu Yq., Wang C., Bai C., Zhu D. Ring formation and fracture of a carbon nanotube // Chemical Physics Letters. 2001. Vol. 339, № 1. P. 36–40.
  11. Глухова О. Е., Терентьев О. А. Теоретическое изучение зависимостей модулей Юнга и кручения тонких однослойных углеродных нанотрубок zigzag и armchair от геометрических параметров // Физика твердого тела. 2006. Т. 48, вып. 7. С. 1329–335.
  12. Glukhova O. E. Dimerization of miniature C20 and C28 fullerenes in nanoautoclave // J. Molecular Modeling. 2011. Vol. 17, № 3. P. 573–576.
  13. Wang Y., Tomanek D., Bertsh G. F. Stiffness of a solid composed of C60 clusters // Phys. Rev. B. 1991. Vol. 44, № 12. P. 6562–5665.