Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Yurko V. A. Inverse Spectral Problem for Discrete Operators in Topological Spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, vol. 14, iss. 4, pp. 439-447. DOI: 10.18500/1816-9791-2014-14-4-439-447, EDN: TAAMKN

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
01.12.2014
Full text:
(downloads: 147)
Language: 
Russian
Heading: 
UDC: 
517.984
EDN: 
TAAMKN

Inverse Spectral Problem for Discrete Operators in Topological Spaces

Autors: 
Yurko Vjacheslav Anatol'evich, Saratov State University
Abstract: 

An inverse spectral problem for discrete operators of a triangular structure in topological spaces is studied. A constructive procedure for the solution of the inverse problem is provided. Necessary and sufficient conditions for its solvability are obtained.

References: 
  1. Atkinson F. Discrete and Continuous Boundary Problems. N. Y. : Academic Press, 1964.
  2. Nikishin E. M. The discrete Sturm – Liouville operator and some problems of the theory of functions // J. Soviet Math. 1986. Vol. 35. P. 2679–2744.
  3. Гусейнов Г. Ш. Определение бесконечной несамосопряженной матрицы Якоби по ее обобщенной спектральной функции // Матем. заметки. 1978. Т. 23, вып. 2. С. 237–248.
  4. Yurko V. A. On higher-order difference operators // J. Differ. Equ. Appl. 1995. Vol. 1. P. 347–352. Inverse Spectral Problem for Discrete Operators in Topological Spaces
Received: 
07.06.2014
Accepted: 
20.10.2014
Published: 
01.12.2014