Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Anofrikova N. S., Sergeeva N. V. Investigation of Harmonic Waves in the Viscoelastic Layer. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, vol. 14, iss. 3, pp. 321-328. DOI: 10.18500/1816-9791-2014-14-3-321-328, EDN: SMSJXJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
10.09.2014
Full text:
(downloads: 162)
Language: 
Russian
Heading: 
UDC: 
539.3
EDN: 
SMSJXJ

Investigation of Harmonic Waves in the Viscoelastic Layer

Autors: 
Anofrikova Nataliia Sergeevna, Saratov State University
Sergeeva Nadezhda Viktorovna, Saratov State University
Abstract: 

The paper deals with the study of harmonic waves in the viscoelastic layer. The properties of the material are described by the constitutive equations in the integral form. The fractional exponential function of Rabotnov is chosen as a kernel of integral operator. Two cases are considered: symmetric stress-strain state (SSS) and asymmetric SSS. The properties of modes which change in time harmonically are investigated for the purpose of studying of the free vibrations. Dispersion equations for both cases are derived. The numerical solutions of dispersion equations are obtained. Asymptotics of the roots of the dispersion equations for small and large values of frequencies are obtained. Analysis of the solutions is done. The influence of viscosity factors on the behavior of the dispersion curves is established. Comparative analysis of numerical solutions and asymptotics of the roots of dispersion equations are made.

References: 
  1. Meleshko V. V., Bondarenko A. A., Dovgiy S. A., Trofimchuk A. N., Heijst G. J. F. van. Uprugie volnovodyi : istoriya i sovremennost [The elastic waveguides: the history and the present-day]. Matemanicheskie metody i fiziko-mehanicheskie polya [Mathematical methods and physico-mechanical fields], 2008, vol. 51, no. 2, pp. 86–104 (in Russian).
  2. Rabotnov Yu. N. Elementy nasledstvennoy mechaniki tverdych tel [Elements of hereditary mechanics of solids]. Moscow, Nauka, 1977, 384 p. (in Russian),
  3. Kozhanova T. V., Kossovich L. Yu. Dispersionnye uravneniya Releya – Lemba [Dispersion equations of Rauleigh-Lamb]. Saratov, Saratov Univ. Press, 1990, 21 p. (in Russian).
  4. Berezin V. L., Kharitonova K. Yu. Primenenie metoda matematicheskogo mikroskopa pri reshenii transtcendentnykh uravneniy [Application of the method of mathematical microscope for solving transcendental equations]. Problemy tochnoi mehaniki i upravleniya [Problems of precise mechanics and control]. Saratov, Saratov Univ. Press, 2004, pp. 119–122 (in Russian).
  5. Baryshev A. A., Lysunkina Yu. V. O primenenii metoda prodolzheniya resheniya po parametru k analizu dispersionnyih uravneniy v sisteme Mathematica [On the application of parameter continuation method to  the analysis of ispersion equations in Mathematica]. Matematika. Mehanika [Mathematics. Mechanics]. Saratov, Saratov Univ. Press, 2013, iss. 15, pp. 108–111 (in Russian).
  6. Chervinko O. P., Senchenkov I. K. Garmonicheskie volny v sloe i beskonechnom tsilindre [Harmonic viscoelastic waves in a layer and in an infinite cylinder]. Prikladnaya mekhanika [Applied Mechanics], 1986, vol. 22, iss. 12, pp. 31–37 (in Russian).
  7. Tanaka К., Kon-No A. Harmonic Waves in Lenear Viscoelastic Plate. Bull. JSME, 1980, vol. 23, no. 176, pp. 185–193.
Received: 
20.03.2014
Accepted: 
16.07.2014
Published: 
10.09.2014