Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Lukomskii S. F. Matrix representation of dilation operator on the product of zero-dimensional locally compact Abelian groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 2, pp. 8-14. DOI: 10.18500/1816-9791-2013-13-2-1-8-14

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
27.02.2013
Full text:
(downloads: 94)
Language: 
Russian
Heading: 
UDC: 
517.518.34, 517.518.36, 517.986.62

Matrix representation of dilation operator on the product of zero-dimensional locally compact Abelian groups

Autors: 
Lukomskii Sergei Feodorovich, Saratov State University
Abstract: 

In the real wavelet analysis dd-dimensional dilation operator may be written with the help of an integer-valued d×dmatrix. We find the matrix representation of the dilation operator on the product of zero-dimensional locally compact Abelian groups. 

References: 
  1. Khrennikov A. Yu., Shelkovich V. M. P-adic multidimensional wavelets and their application to p-adic pseudo-differential operators. Preprint, 2006. Available at: http://arxiv.org/abs/math-ph/0612049 (accessed 28 September 2012).
  2. Shelkovich V. M., Skopina M. A. P-adic Haar multiresolution analysis and pseudo-differential operators. J. Fourier Anal. Appl., 2009, vol. 15, no.
  3. pp. 366–393. 3. Novikov I. Ya., Protasov V. Yu., Skopina M. A. Wavelet Theory. Translations Mathematical Monographs, vol. 239. New York, Amer. Math. Soc., 2011, 506 p.
  4. King E. J., Skopina M. A. Quincunx Multiresolution Analysis for L2(Q2 2). P-adic Numbers. Ultrametric Analysis and Applications, 2010, vol. 2, no. 3, pp. 222– 231.
  5. Lukomskii S. F. Multiresolution analysis on product of zero-dimensional Abelian groups. J. Math. Anal. Appl., 2012, vol. 385, pp. 1162–1178.
  6. Lukomskii S. F. Haar System on a product of zerodimensional compact group. Centr. Eur. J. Math., 2011, vol. 9, no. 3, pp. 627–639.
  7. Agaev G. N., Vilenkin N. Ya., Dzafarli G. M., Rubinstein A. I. Mul’tiplikativnye sistemy funktsii i garmonicheskii analiz na nul’mernykh gruppakh [Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups]. Baku, Elm, 1981. 180 p. (in Russian).
  8. Kargapolov M. I., Merzljakov Ju. I. Fundamentajs of the Theory of Groups. New York, Springer-Verlag, 1979, 203 p. (Russ. ed.: Kargapolov M. I., Merzljakov Ju. I. Osnovy teorii grupp. Moscow, Nauka, 1982. 288 p.) 9. Lukomskii S. F. Haar system on the product of groups of p-adic integer. Math. Notes, 2011, vol. 90, iss. 4, pp. 517–532.
Short text (in English):
(downloads: 37)