Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Kovalev V. A., Radaev Y. N. Micropolar Thermoelastic Continuum Models with Constrained Microstructural Parameters. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2015, vol. 15, iss. 4, pp. 451-461. DOI: 10.18500/1816-9791-2015-15-4-451-461

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
21.12.2015
Full text:
(downloads: 110)
Language: 
Russian
Heading: 
UDC: 
539.374

Micropolar Thermoelastic Continuum Models with Constrained Microstructural Parameters

Autors: 
Kovalev Vladimir Aleksandrovich, Moscow City Government University of Management Moscow, Russia
Radaev Yuri Nickolaevich, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Abstract: 

A new micropolar thermoelastic continuum model forrmulated by microstructural d-vectors and d-tensors of an arbitrary ranks is proposed. The microstructural vectorial and tensorial extra-field variables are restricted by holonomic or non-holonomic (differential) constraints. The study is carried out in the framework of the Lagrange field formalism as a 4covariant field theory. Taking into consideration of holonomic or differential constraints involving microstructural parameters implies problem formulation as a problem of calculus of variations with constraints, namely as the variational Lagrange problem. The Lagrange multipliers technique is employed for derivation of field equations when microstructural parameters are restricted by the two types of constraints. Micropolar thermoelastic continuum model for the case of rigid rotations of the micropolar trihedron is considered as an example.

References: 
  1. Гюнтер Н. М. Курс вариационного исчисления. М. ; Л. : Гостехтеоретиздат, 1941. 308 с.
  2. Бердичевский В. Л. Вариационные принципы механики сплошной среды. М. : Наука, 1983. 448 с.
  3. Toupin R. A. Theories of Elasticity with Couple-stress // Arch. Rational Mech. Anal. 1964. Vol. 17, № 5. P. 85–112.
  4. Седов Л. И. Введение в механику сплошных сред. М. : Физматгиз, 1962. 284 с.
  5. Ильюшин А. А. Механика сплошных сред. М. : Изд-во Моск. ун-та, 1978. 287 с.
  6. Грин А., Адкинс Дж. Большие упругие деформации и нелинейная механика сплошной среды. М. : Мир, 1965. 456 с.
  7. Cosserat E. et F. Théorie des corps déformables. Paris : Librairie Scientifique A. Hermann et Fils, 1909. 226 p.
  8. Ковалев В. А., Радаев Ю. Н. Элементы теории поля : вариационные симметрии и геометрические инварианты. М. : Физматлит, 2009. 156 с.
  9. Ковалев В. А., Радаев Ю. Н. Волновые задачи теории поля и термомеханика. Саратов : Изд-во Сарат. ун-та, 2010. 328 с.