Известия Саратовского университета. Новая серия.

Серия Математика. Механика. Информатика

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Для цитирования:

Ковалёв В. А., Радаев Ю. Н. Модели микрополярных термоупругих континуумов со связанными параметрами микроструктуры // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2015. Т. 15, вып. 4. С. 451-461. DOI: 10.18500/1816-9791-2015-15-4-451-461

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
21.12.2015
Полный текст:
(downloads: 49)
Язык публикации: 
русский
Рубрика: 
УДК: 
539.374

Модели микрополярных термоупругих континуумов со связанными параметрами микроструктуры

Авторы: 
Ковалёв Владимир Александрович, Московский городской университет управления Правительства Москвы
Радаев Юрий Николаевич, Институт проблем механики им. А. Ю. Ишлинского Российской академии наук, г. Москва, Россия
Аннотация: 

Предложена новая теоретико-полевая модель термоупругого континумма с микрополярной структурой, определяемой микроструктурными d-векторами и d-тензорами, ранг которых может быть произвольно высоким. Микроструктурные век- торные и тензорные экстраполевые переменные подчиняются уравнениям связей (ограничениям), конечным (голономным) или дифференциальным (неголономным). Исследование выполнено на основе лагранжева полевого формализма в стиле 4-ковариантных физических теорий поля. Наличие конечных или дифференциальных связей, накладываемых, в частности, на микроструктурные параметры, подразумевает формулировку проблемы как связанной задачи вариационного исчисления, точнее, как вариационной задачи Лагранжа для многомерного интегрального функционала. Правило множителей Лагранжа применяется для вывода дифференциальных уравнений поля при наличии связей между микроструктурными переменными. Связи могут быть конечными и дифференциальными, в каждом их этих случаев получены уравнения поля. В качестве примера рассматривается микрополярный континуум с жестким репером директоров, определяющих его микроструктуру.

Список источников: 
  1. Гюнтер Н. М. Курс вариационного исчисления. М. ; Л. : Гостехтеоретиздат, 1941. 308 с.
  2. Бердичевский В. Л. Вариационные принципы механики сплошной среды. М. : Наука, 1983. 448 с.
  3. Toupin R. A. Theories of Elasticity with Couple-stress // Arch. Rational Mech. Anal. 1964. Vol. 17, № 5. P. 85–112.
  4. Седов Л. И. Введение в механику сплошных сред. М. : Физматгиз, 1962. 284 с.
  5. Ильюшин А. А. Механика сплошных сред. М. : Изд-во Моск. ун-та, 1978. 287 с.
  6. Грин А., Адкинс Дж. Большие упругие деформации и нелинейная механика сплошной среды. М. : Мир, 1965. 456 с.
  7. Cosserat E. et F. Théorie des corps déformables. Paris : Librairie Scientifique A. Hermann et Fils, 1909. 226 p.
  8. Ковалев В. А., Радаев Ю. Н. Элементы теории поля : вариационные симметрии и геометрические инварианты. М. : Физматлит, 2009. 156 с.
  9. Ковалев В. А., Радаев Ю. Н. Волновые задачи теории поля и термомеханика. Саратов : Изд-во Сарат. ун-та, 2010. 328 с.