Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Dozorov A. A. Modeling of the shock system motion with impacts about hard barriers. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 2, pp. 54-60. DOI: 10.18500/1816-9791-2013-13-2-1-54-60, EDN: SJJAXZ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
27.02.2013
Full text:
(downloads: 189)
Language: 
Russian
Heading: 
UDC: 
531.1; 531.66; 004.942
EDN: 
SJJAXZ

Modeling of the shock system motion with impacts about hard barriers

Autors: 
Dozorov Aleksei Aleksandrovich, Ulyanovsk State Technical University
Abstract: 

Abstract: We have developed a model of a shock system with a resilient member under periodic force action including impacts about hard barriers. In order to model the shock system we have developed a program providing a computational solution for differential equations of a subject motion taking into account conditions of periodicity and collision, graphical and numerical reproduction of motion parameters in the simulation process. We have performed simulation of modes of the shock system. In the process of computational experiments parameters of the system response have been estimated and corrected upon the results. 

References: 
  1. Alimov O. D., Manzhosov V. K., Eremiants V. E. Udar. Rasprostranenie voln deformacij v udarnyh sistemah [Shock. Propagation of strain waves in shock systems]. Moscow, Nauka, 1985, 354 p. (in Russian).
  2. Alimov O. D., Basov S. A. Gidravlicheskie vibroudar- nye sistemy [Hydraulic vibroimpact systems]. Moscow, Nauka, 1990, 352 p. (in Russian).
  3. Krupenin V. L. Udarnye i vibroudarnye mashiny i ustrojstva [Shock and vibroimpact machine and devices]. Vestnik nauchno-tehnicheskogo razvitija, 2009, no. 4 (20), pp. 3–32 (in Russian).
  4. Manzhosov V. K., Novikov D. A. Impact system motion modes simulation at periodic force effect. Izv. Sarat. Univ. N. S. Ser. Math. Mech. Inform., 2010, vol. 10, iss. 4, pp. 65–71 (in Russian).
  5. Manzhosov V. K., Novikov D. A. Limit cycles of motion of a shock system in case of relay-type force and shock action at the moment of force switching. Avtomatizacija processov upravlenija, 2011, no. 3(25), pp. 14–20 (in Russian). 10
Received: 
18.08.2012
Accepted: 
22.01.2013
Published: 
27.02.2013
Short text (in English):
(downloads: 98)