For citation:
Trynin A. Y. Necessary and Sufficient Conditions for the Uniform on a Segment Sinc-approximations Functions of Bounded Variation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 3, pp. 288-298. DOI: 10.18500/1816-9791-2016-16-3-288-298, EDN: WMIIGX
Necessary and Sufficient Conditions for the Uniform on a Segment Sinc-approximations Functions of Bounded Variation
The necessary and sufficient conditions for the uniform convergence of sinc-approximations of functions of bounded variation is obtained. Separately we consider the conditions for the uniform convergence in the interval (0, π) and on the interval [0, π]. The impossibility of uniform approximation of arbitrary continuous function of bounded variation on the interval [0, π] is settled. We identify the main error of the sinc-approximations when approaching non-smooth functions in spaces of continuous functions and continuous functions vanishing at the ends of the interval [0, π], equipped with the norm of Chebyshev.
- Kashin B. S.; Saakyan A. A. Ortogonol’nye ryady [Orthogonal series]. Moscow, AFTs, 1999, 550 p. (in Russian).
- Novikov I. Ya., Stechkin S. B. Basic wavelet theory. Russian Math. Surveys, 1998, vol. 58, iss. 6, pp. 1159–1231. DOI: https://doi.org/10.1070/rm1998v053n06ABEH000089.
- Stenger F. Numerical Metods Based on Sinc and Analytic Functions. Springer Series in Comput. Math. (Book 20). New York, Springer-Verlag, 1993, 565 p.
- Dobeshi I. Desiat’ lektsii po veivletam [Ten lectures on wavelets]. Izhevsk, NITs "Reguliarnaia i khaoticheskaia dinamika", 2001, 464 p. (in Russian).
- Butzer P. L. A retrospective on 60 years of approximation theory and associated fields. J. Approx. Theory, 2009, vol. 160, iss. 1–2, pp. 3–18. DOI: https://doi.org/10.1016/j.jat.2009.05.004.
- Schmeisser G., Stenger F. Sinc Approximation with a Gaussian Multiplier. Sampl. Theory Signal Image Process., 2007, vol. 6, no. 2, pp. 199–221.
- Livne O. E., Brandt A. E. MuST : The Multilevel Sinc Transform. SIAM J. Sci. Comput., 2011, vol. 33, iss. 4, pp. 1726–1738. DOI: https://doi.org/10.1137/100806904.
- Tharwat M. M. Sinc approximation of eigenvalues of Sturm – Liouville problems with a Gaussian multiplier. Calcolo, 2014, vol. 51, iss. 3, pp. 465–484. DOI: https://doi.org/10.1007/s10092-013-0095-3.
- Kivinukk A., Tamberg G. Interpolating generalized Shannon sampling operators, their norms and approximation theoremerties. Sampl. Theory Signal Image Process., 2009, vol. 8, no. 1, pp. 77–95.
- Schmeisser G. Interconnections Between Multiplier Methods and Window Methods in Generalized Sampling. Sampl. Theory Signal Image Process., 2010, vol. 9, no. 1–3, pp. 1–24.
- Jerri A. J. Lanczos-Like σ-Factors for Reducing the Gibbs Phenomenon in General Orthogonal Expansions and Other Representations. J. Comput. Anal. Appl., 2000, vol. 2, iss. 2, pp. 111–127. DOI: https://doi.org/10.1023/A:1010146500493.
- Trynin A. Yu., Sklyarov V. P. Error of sincapproximation of analytic functions on an interval. Sampl. Theory Signal Image Process., 2008, vol. 7, no. 3, pp. 263–270.
- Zayed A. I., Schmeisser G. New Perspectives on Approximation and Sampling Theory. Ser. Applied and Numerical Harmonic Analysis. Basel, Birkhauser, 2014. 472 p. DOI: https://doi.org/10.1007/978-3-319-08801-3.
- Trynin A. Yu. Ob otsenke approksimatsii analiticheskikh funktsii interpoliatsionnym operatorom po sinkam [On an estimate of approximation of analytic functions by interpolation sinc-operator]. Mathematics, Mechanics. Collection of Scientific Papers, Saratov, Saratov Univ. Press, 2005, iss. 7, pp. 124– 127 (in Russian).
- Trynin A. Yu. Estimates for the Lebesgue functions and the Nevai formula for the sinc-approximations of continuous functions on an interval. Siberian Math. J., 2007, vol. 48, iss. 5, pp. 929–938. DOI: https://doi.org/10.1007/s11202-007-0096-z.
- Trynin A. Yu. Tests for pointwise and uniform convergence of sinc approximations of continuous functions on a closed interval. Sb. Math., 2007, vol. 198, no. 10, pp. 1517–1534. DOI: https://doi.org/10.1070/SM2007v198n10ABEH003894.
- Trynin A. Yu. A criterion for the uniform convergence of sinc-approximations on a segment. Russian Math., 2008, vol. 52, iss. 6, pp. 58–69. DOI: https://doi.org/10.3103/S1066369X08060078.
- Sklyarov V. P. On the best uniform sincapproximation on a finite interval. East J. Approx., 2008, vol. 14, no. 2, pp. 183–192.
- Mohsen A., El-Gamel M. A Sinc-Collocation method for the linear Fredholm integro-differential equations. ZAMP, 2007, vol. 58, iss.3, pp. 380-390. DOI: https://doi.org/10.1007/s00033-006-5124-5.
- Trynin A. Yu. On divergence of sinc-approximations everywhere on (0, π). St. Petersburg Math. J., 2011, vol. 22, iss. 4, pp. 683–701. DOI: https://doi.org/10.1090/S1061-0022-2011-01163-X.
- Trynin A. Yu. On some properties of sinc approximations of continuous functions on the interval. Ufa Math. J., 2015, vol. 7, iss. 4, pp. 111–126. DOI: https://doi.org/10.13108/2015-7-4-111.
- Trynin A. Yu. On necessary and sufficient conditions for convergence of sinc approximations. Algebra i Analiz, 2015, vol. 27, iss. 5, pp. 170–194 (in Russian).
- Trynin A. Yu. Approximation of continuous on a segment functions with the help of linear combinations of sincs. Russian Math., 2016, vol. 60, iss. 3, pp. 63–71. DOI: https://doi.org/10.3103/S1066369X16030087.
- Trynin A. Yu. A generalization of the Whittaker – Kotel’nikov – Shannon sampling theorem for continuous functions on a closed interval. Sb. Math., 2009, vol. 200, iss. 11, pp. 1633–1679. DOI: https://doi.org/10.1070/SM2009v200n11ABEH004054.
- Trynin A. Yu. On operators of interpolation with respect to solutions of a Cauchy problem and Lagrange – Jacobi polynomials. Izv. Math., 2011, vol. 75, iss. 6, pp. 1215–1248. DOI: https://doi.org/10.1070/IM2011v075n06ABEH002570.
- Kramer H. P. A generalized sampling theorem. J. Math. Phus., 1959, vol. 38, pp. 68–72.
- Zayed A. I., Hinsen G., Butzer P. L On Lagrange interpolation and Kramer-type sampling theorems associated with Sturm – Liouville problems. SIAM J. Appl. Math., 1990, vol. 50, no. 3, pp. 893–909.
- Natanson G. I. Ob odnom interpoliatsionnom protsesse [An interpolation process]. Uchen. zapiski Leningrad. ped. in-ta, 1958, vol. 166, pp. 213–219 (in Russian).
- Trynin A. Yu. On the absence of stability of interpolation in eigenfunctions of the Sturm – Liouville problem. Russian Math., 2000, vol. 44, iss. 9, pp. 58–71.
- Trynin A. Yu. Differential properties of zeros of eigenfunctions of the Sturm – Liouville problem. Ufimsk. Mat. Zh., 2011, vol. 3, iss. 4, pp. 133–143 (in Russian).
- Trynin A. Yu. On inverse nodal problem for Sturm – Liouville operator. Ufa Math. J., 2013, vol. 5, iss. 4, pp. 112–124. DOI: https://doi.org/10.13108/2013-5-4-112.
- Trynin A. Yu. The divergence of Lagrange interpolation processes in eigenfunctions of the Sturm – Liouville problem. Russian Math., 2010, vol. 54, iss. 11, pp. 66–76. DOI: https://doi.org/10.3103/S1066369X10110071.
- Trynin A. Yu. Printsip lokalizatsii dlia protsessov Lagranzha – Shturma – Liuvillia [The localization principle for the Lagrange – Sturm – Liouville processes]. Mathematics, Mechanics: Collection of Scientific Papers, Saratov, Saratov Univ. Press, 2006, iss. 8, pp. 137–140 (in Russian).
- Trynin A. Yu. Ob odnom integral’nom priznake skhodimosti protsessov Lagranzha – Shturma – Liuvillia [An integral criterion for the convergence of the Lagrange – Sturm – Liouville processes]. Mathematics, Mechanics: Collection of Scientific Papers, Saratov, Saratov Univ. Press, 2007, iss. 9, pp. 94–97 (in Russian).
- Trynin A. Yu. Sushchestvovanie sistem Chebysheva s ogranichennymi konstantami Lebega interpoliatsionnykh protsessov [Existence of Chebyshev systems with limited Lebesgue constants interpolation processes]. Mathematics, Mechanics: Collection of Scientific Papers, Saratov, Saratov Univ. Press, 2008, iss. 10, pp. 79–81 (in Russian).
- Trynin A. Yu. Primer sistemy Chebysheva s pochti vsiudu skhodiashcheisia k nuliu posledovatel’nost’iu funktsii Lebega interpoliatsionnykh protsessov [Example Chebyshev system converges almost everywhere to zero Lebesgue functions of the sequence of interpolation processes]. Mathematics, Mechanics: Collection of Scientific Papers, Saratov, Saratov Univ. Press, 2009, iss. 11, pp. 74–76 (in Russian).
- Trynin A. Iu., Panfilova I. S. Ob odnom priznake tipa Dini – Lipshitsa skhodimosti obobshchennykh interpoliatsionnykh protsessov Uittekera – Kotel’nikova – Shennona [A criterion such as the Dini – Lipschitz convergence of generalized interpolation processes Whittaker – Nyquist – Shannon]. Mathematics, Mechanics: Collection of Scientific Papers, Saratov, Saratov Univ. Press, 2010, iss. 12, pp. 83–87 (in Russian).
- Trynin A. Iu., Panfilova I. S. O raskhodimosti interpoliatsionnykh protsessov Lagranzha po uzlam Iakobi na mnozhestve polnoi mery [On the divergence of Lagrange interpolation processes on Jacobi nodes on a set of full measure]. Mathematics, Mechanics: Collection of Scientific Papers, Saratov, Saratov Univ. Press, 2010, iss. 12, pp. 87–91 (in Russian).
- Trynin A. Yu. O neobkhodimykh i dostatochnykh usloviiakh ravnomernoi i potochechnoi skhodimosti interpoliatsionnykh protsessov po "vzveshennym"mnogochlenam Iakobi [On necessary and sufficient conditions for the uniform and pointwise convergence of interpolation processes on the "weighted"Jacobi polynomials]. Mathematics, Mechanics: Collection of Scientific Papers, Saratov, Saratov Univ. Press, 2011, iss. 13, pp. 96–100 (in Russian).
- Trynin A. Yu. Ob odnoi modifikatsii analoga formuly Nevai dlia sink-priblizhenii nepreryvnykh funktsii na otrezke [A modification of the Nevai formula for analog sinc-approximations of continuous functions on the interval]. Mathematics, Mechanics: Collection of Scientific Papers, Saratov, Saratov Univ. Press, 2014, iss. 16, pp. 78–81 (in Russian).
- Trynin A. Yu. O nekotorykh dostatochnykh usloviiakh ravnomernoi skhodimosti sink-approksimatsii [Some sufficient conditions for the uniform convergence of sinc-approximations]. Mathematics, Mechanics: Collection of Scientific Papers, Saratov, Saratov Univ. Press, 2015, iss. 17, pp. 269–272 (in Russian).
- 1190 reads