For citation:
Garkovskaya S. А. Nonseparable Wavelets of Meyer Type in Besov and Lizorkin – – Triebel Spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2009, vol. 9, iss. 2, pp. 12-18. DOI: 10.18500/1816-9791-2009-9-2-12-18
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
18.06.2009
Full text:
(downloads: 189)
Language:
Russian
Heading:
UDC:
517.5
Nonseparable Wavelets of Meyer Type in Besov and Lizorkin – – Triebel Spaces
Autors:
Garkovskaya S.A. А., Voronezh State University
Abstract:
Iti sproved that Fourier transforms of nonseparable wavelets of Meyer type can be used as decomposition of unity in definition of Besov and Lizorkin – Triebel spaces. The result is the first step in the proof of unconditional basisness of above mentioned wavelets in scales under consideration.
Key words:
References:
- Новиков И.Я., Протасов В.Ю., Скопина М.А. Теория всплесков. М.: Физматлит, 2005. 616 с.
- Bownik M., Speegle D. Meyer Type Wavelet Bases in R2 // J. of Approx. Theory. 2002. V. 116. P. 49–75.
- Lindemann M. Approximation Properties of Non Separable Wavelet Bases with Isotropic Scaling Matrices and their Relations to Besov Spaces / University Bremen. Bremen, 2005. 126 p.
- Трибель Х. Теория функциональных пространств. М.: Мир, 1986. 448 с.
- 955 reads