Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Ershov A. V. Obstructions to Embedding of Matrix Algebra Bundles into a Trivial One. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2009, vol. 9, iss. 3, pp. 27-33. DOI: 10.18500/1816-9791-2009-9-3-27-33

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.08.2009
Full text:
(downloads: 180)
Language: 
Russian
Heading: 
UDC: 
515.14

Obstructions to Embedding of Matrix Algebra Bundles into a Trivial One

Autors: 
Ershov Andrej Vladimirovich, Saratov State University
Abstract: 

Topological obstructions to embedding of an Mk(C)-bundle into a trivial Mkl(C)-bundle under the condition (k, l) = 1 are studied. The relation of this problem to the theory of bundles with a structure groupoid is described.

References: 
  1. Пирс Р. Ассоциативные алгебры. М.: Мир, 1986. 543 с.
  2. Каруби М. К-теория. Введение. М.: Мир, 1981. 360 с.
  3. Peterson F.P. Some remarks on Chern classes // Annals of Math. 1959. V. 69. P. 414–420.
  4. Ershov A.V. A generalization of the topological Brauer group // J. of K-theory: K-theory and its Applications to Algebra, Geometry and Topology. 2008. V. 2, Spec. Iss. 03. P. 407–444.
  5. Connes A. Noncommutative geometry. N.Y.: Academic Press, 1994. 661 p.
  6. Ershov A.V. Topological obstructions to embedding of a matrix algebra bundle into a trivial one // http://arxiv.org/abs/0807.3544.