For citation:
Ershov A. V. Obstructions to Embedding of Matrix Algebra Bundles into a Trivial One. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2009, vol. 9, iss. 3, pp. 27-33. DOI: 10.18500/1816-9791-2009-9-3-27-33
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
31.08.2009
Full text:
(downloads: 223)
Language:
Russian
Heading:
UDC:
515.14
Obstructions to Embedding of Matrix Algebra Bundles into a Trivial One
Autors:
Ershov Andrej Vladimirovich, Saratov State University
Abstract:
Topological obstructions to embedding of an Mk(C)-bundle into a trivial Mkl(C)-bundle under the condition (k, l) = 1 are studied. The relation of this problem to the theory of bundles with a structure groupoid is described.
References:
- Пирс Р. Ассоциативные алгебры. М.: Мир, 1986. 543 с.
- Каруби М. К-теория. Введение. М.: Мир, 1981. 360 с.
- Peterson F.P. Some remarks on Chern classes // Annals of Math. 1959. V. 69. P. 414–420.
- Ershov A.V. A generalization of the topological Brauer group // J. of K-theory: K-theory and its Applications to Algebra, Geometry and Topology. 2008. V. 2, Spec. Iss. 03. P. 407–444.
- Connes A. Noncommutative geometry. N.Y.: Academic Press, 1994. 661 p.
- Ershov A.V. Topological obstructions to embedding of a matrix algebra bundle into a trivial one // http://arxiv.org/abs/0807.3544.
- 894 reads