For citation:
Rodionov E. A. On Applications of Wavelets in Digital Signal Processing. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 2, pp. 217-225. DOI: 10.18500/1816-9791-2016-16-2-217-225, EDN: WCNQMJ
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
14.06.2016
Full text:
(downloads: 250)
Language:
Russian
Heading:
UDC:
519.72
EDN:
WCNQMJ
On Applications of Wavelets in Digital Signal Processing
Autors:
Rodionov Evgeny Anatolievich, Russian State Geological Prospecting University
Abstract:
Discrete Wavelet transform associated with the Walsh functions was defined by Lang in 1998. The article describes an application of Lang’s transform and some its modifications in analysis of financial time series and for the compression of fractal data. It is shown that for the processing of certain signals the studied discrete wavelet transform has advantages over the discrete transforms Haar, Daubechies and the method of zone coding.
References:
- Koronovskii A. A., Khramov A. E. Continuous wavelet analysis and its applications. Moscow, Fizmatlit, 2003, 176 p. (in Russian).
- Percival D., Walden A. Wavelet Methods for Time Series Analysis. Cambridge : Cambridge University Press, 2000. 611 p.
- Stephane Mallat. A Wavelet Tour of Signal Processing the Sparse Way. 3rd. edition. Burlington, Elsevier Inc., 2008, 620 p. (Russ. ed. : Malla S. Veivlety v obrabotke signalov. Moscow, Mir, 2005, 671 p.)
- Golubov B. I., Efimov A. V., Skvortsov V. A. Walsh Series and Transforms : Theory and Applications. Dordrecht; Boston; London, Kluwer Academic Publishers, 368 p. (Russ. ed. : Golubov B. I., Efimov A. V., Skvortsov V. A. Riady i preobrazovaniia Uolsha : Teoriia i primeneniia. Izd. 2-e, ispr. i dop. Moscow, LKI, 2008, 208 p. )
- Zalmanzon L. A. Preobrazovanija Fur’e, Uolsha, Haara i ih primenenie v upravlenii, svjazi i drugih oblastjah [Fourier, Walsh and Haar transforms and its application in management, communication and in other areas]. Moscow, Nauka, 1989, 496 p. (in Russian).
- Lang W. C. Fractal multiwavelets related to the Cantor dyadic group // Intern. J. Math. and Math. Sci. 1998. Vol. 21. P. 307–317. DOI: https://doi.org/10.1155/S0161171298000428.
- Farkov Yu. A., Maksimov A. Yu., Stroganov S. A. On biorthogonal wavelets related to the Walsh functions // Intern. J. Wavelets Multiresolut. Inf. Process. 2011. Vol. 9. P. 485–499. DOI: https://doi.org/10.1142/S0219691311004195.
- Farkov Yu. A., Rodionov E. A. On biorthogonal discrete wavelet bases // Intern. J. Wavelets Multiresolut. Inf. Process. 2015. Vol. 13, № 1, 1550002 (18 p). DOI: https://doi.org/10.1142/S0219691315500022.
- Welstead S. Fractal and Wavelet Image Compression Techniques. Bellingham, Wash, SPIE Press, 2003, 259 p.
- Farkov Yu. A., Rodionov E. A. Nonstationary wavelets related to the Walsh functions // American J. Comput. Math. 2012. Vol. 2, № 2. P. 82–87. 11. Farkov Yu. A. Periodic wavelets in Walsh analysis // Communic. Math. Appl. 2012. Vol. 3, № 3. P. 223—242.
- Farkov Yu. A. Periodic wavelets in Walsh analysis. Communic. Math. Appl., 2012, vol. 3, no. 3, pp. 223–242.
- Farkov Yu. A., Borisov M. E. Periodic dyadic wavelets in coding of fractal functions. Russian Math. (Iz. VUZ), 2012, vol. 9, no. 56, pp. 46–56. DOI: https://doi.org/10.3103/S1066369X1209006X.
- Lyubushin A. A. Seismic catastrophe in Japan on March 11, 2011 : Long-term prediction on the basis of low-frequency microseisms. Izvestiya, Atmospheric and Oceanic Physics, 2011, vol. 47, iss. 8, no. 1, pp. 904–921.
- Stroganov S. A. Smoothness estimates of lowfrequency microseisms using dyadic wavelets. Geophysical Research, 2012, vol. 13, no. 1, pp. 17–22 (in Russian).
- Lyubushin A. A., Jakovlev P. V., Rodionov E. A. Multiple analysis of GPS signal fluctuation parameters before and after the megaearthquake in Japan on 11 March 2011. Geophysical Research, 2015, vol. 16, no. 1, pp. 14–23 (in Russian).
- Lyubushin A. A. Analiz dannyh sistem geofizicheskogo i jekologicheskogo monitoringa [Data analysis systems for geophysical and environmental monitoring]. Moscow, Nauka, 2007, 228 p. (in Russian).
- Farkov Yu. A. Constructions of MRA-based wavelets and frames in Walsh analysis // Poincare J. Anal. Appl. 2015. Vol. 2. Special Issue (IWWFA-II, Delhi). P. 13–36.
- Farkov Yu. A. Discrete wavelets and the Vilenkin –Chrestenson transform. Math. Notes, 2011, vol. 89, iss. 6, pp. 914–928. DOI: https://doi.org/10.4213/mzm8704.
- Farkov Yu. A., Rodionov E. A. Algorithms for Wavelet Construction on Vilenkin Groups // p-Adic Numb. Ultr. Anal. Appl. 2011. Vol. 3, № 3. P. 181–195. DOI: https://doi.org/10.1134/S2070046611030022.
- Novikov I. Ya., Protasov V. Yu., Skopina M. A. Wavelet Theory. AMS, Translations Mathematical Monographs, 2011, vol. 239, 506 p. (Russ. ed. : Novikov I. Ya., Protasov V. Yu., Skopina M. A. Teorija vspleskov. Moscow, Fizmatlit, 2005, 616 p.).
- Farkov Yu. A., Lebedeva E. A., Skopina M. A. Wavelet frames on Vilenkin groups and their approximation properties // Intern. J. Wavelets Multiresolut. Inf. Process. Vol. 13, №. 5, 1550036 (19 p). DOI: https://doi.org/10.1142/S0219691315500368.
- Protasov V. Yu., Farkov Yu. A. Dyadic wavelets and refinable functions on a half-line. Sb. Math., 2006, vol. 197, no. 10, pp. 1529–1558. DOI: https://doi.org/10.1070/SM2006v197n10ABEH003811.
- Burnaev E. V., Olenev N. N. Mery blizosti na osnove vejvlet kojefficientov dlja sravnenija statisticheskih i raschetnyh vremennyh rjadov [Proximity measures of the wavelet coefficients for comparison of statistical and computational time series]. Mezhvuz. sb. nauch. i nauch.-metod. tr. za 2015 g., Kirov, Izd-vo VyatGU, 2006, iss. 10, pp. 41–51 (in Russian).
- Rodionov E. A. O primenenijah veivletov k analizu vremennyh ryadov [On applications of wavelets to analisys of time series]. Sovremennye problemy teorii funkcij i ih prilozhenija : Materialy 18-j mezhdunarodnoj Saratovskoj zimnej shkoly [Contemporary Problems of Function Theory and Their Applications. Proc. 18th Intern. Saratov Winter School], Saratov, Izd-vo "Nauchnaia kniga", 2016,pp. 232–234 (in Russian).
- Sendov Bl. Adapted multiresolution analysis // Functions, series, operators (Budapest, 1999) / eds. L. Leinder, F. Schipp, J. Szabados. Budapest : Janos Bolyai Math. Soc., 2002. P. 23–38.
- Farkov Yu. A. Multiresolution analysis and wavelets on Vilenkin groups // Facta Univ. (Nisˇ), Ser.: Elec. Energ. 2008. Vol. 21, № 3. P. 309–325.
Received:
14.01.2016
Accepted:
29.05.2016
Published:
30.06.2016
- 1495 reads