Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Shakh-Emirov T. N. On Convergence of Bernstein – Kantorovich Operators sequence in Variable Exponent Lebesgue Spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 3, pp. 322-330. DOI: 10.18500/1816-9791-2016-16-3-322-330, EDN: WMIIIL

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
14.09.2016
Full text:
(downloads: 171)
Language: 
Russian
Heading: 
UDC: 
517.51
EDN: 
WMIIIL

On Convergence of Bernstein – Kantorovich Operators sequence in Variable Exponent Lebesgue Spaces

Autors: 
Shakh-Emirov T. N., Daghestan Scientific Centre of Russian Academy of Sciences
Abstract: 

Let E = [0, 1] and let a function p(x) > 1 be measurable and essentially bounded on E. We denote by L p(x) (E) the set of measurable function f on E for which R E |f(x)| p(x) dx < ∞. The convergence of a sequence of operators of Bernstein – Kantorovich {Kn(f, x)} ∞n=1 to the function f in Lebesgue spaces with variable exponent L p(x) (E) is studied. The conditions on the variable exponent at which this sequence is uniformly bounded in these spaces are obtained and, as a corollary, it is shown that if n → ∞ then Kn(f, x) converges to function f in the metric of space L p(x) (E) defined by the norm.

References: 
  1. Kantorovich L. V. Sur certains developpements suivant les polynoˆmes de la forme de S. Bernstein I, II. C. R. Acad. Sci. URSS, 1930, pp. 563– 568; pp. 595–600.
  2. Lorentz G. G. Bernstein Polynomials. Toronto, Univ. Toronto Press, 1953, 130 p.
  3. Sharapudinov I. I. Topology of the space L p(t) ([0, 1]). Math. Notes, 1979, vol. 26, iss 4, pp. 796–806. DOI: https://doi.org/10.1007/BF01159546.
  4. Sharapudinov I. I. Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem [Some aspects of approximation theory in variable Lebesgue spaces]. YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012, 270 p. (in Russian).
  5. Natanson I. P. Konstruktivnaia teoriia funktsii [Constructive theory of functions]. Moscow ; Leningrad, GITTL, 1949. 688 p. (in Russian).
  6. Borovkov A. A. Teoriia veroiatnostei : ucheb. posobie dlia vuzov [Probability Theory : Textbook for High Schools]. Moscow, Nauka, 1986, 432 p. (in Russian).
  7. Vulih B. Z. Vvedenie v funktsional’nyi analiz [Introduction to functional analisys]. Moscow, Nauka, 1967, 416 p. (in Russian).
Received: 
25.04.2016
Accepted: 
24.08.2016
Published: 
30.09.2016