For citation:
Ratseev S. M., Cherevatenko O. I. On Customary Spaces of Leibniz –Poisson Algebras. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, vol. 20, iss. 3, pp. 290-296. DOI: 10.18500/1816-9791-2020-20-3-290-296, EDN: HSODCH
On Customary Spaces of Leibniz –Poisson Algebras
Let K be a base field of characteristic zero. It is well known that in this case all information about varieties of linear algebras V contains in its polylinear components Pn(V), n ∈ N, where Pn(V) is a linear span of polylinear words of n different letters in a free algebra K(X,V). D. Farkas defined customary polynomials and proved that every Poisson PI-algebra satisfies some customary identity. Poisson algebras are special case of Leibniz –Poisson algebras. In the paper the sequence of customary spaces of the free Leibniz –Poisson algebra {Q2n}n⩾1 is investigated. The basis and dimension of spaces Q2n are given. It is also proved that in case of a base field of characteristic zero any nontrivial identity of the free Leibniz –Poisson algebra has nontrivial identities in customary spaces.
- Ratseev S. M. Numerical characteristics of varieties of Poisson algebras. J. Math. Sci., 2019, vol. 237, iss. 2, pp. 304–322.
- Ratseev S. M., Cherevatenko O. I. Numerical characteristics of Leibniz – Poisson algebras. Chebyshevskii Sbornik, 2017, vol. 18, no. 1, pp. 143–159 (in Russian).
- Bahturin Yu. A. Identical relations in Lie algebras. Utrecht, VNU Science Press, 1987. 310 p. (Russ. ed.: Moscow, Nauka, 1985. 448 p.).
- Giambruno A., Zaicev M. V. Polynomial Identities and Asymptotic Methods. AMS Mathematical Surveys and Monographs. Vol. 122. Providence R.I., 2005. 352 p.
- Drensky V. Free algebras and PI-algebras: Graduate course in algebra. Singapore, Springer-Verlag, 2000. 271 p.
- Mishchenko S. P., Petrogradsky V. M., Regev A. Poisson PI algebras. Trans. Amer. Math. Soc., 2007, vol. 359, no. 10, pp. 4669–4695. DOI: https://doi.org/10.1090/S0002-9947-07-04008-1
- Farkas D. R. Poisson polynomial identities. Comm. Algebra, 1998, vol. 26, no. 2, pp. 401–416.
- Farkas D. R. Poisson polynomial identities II. Arch. Math., 1999, vol. 72, iss. 4, pp. 252–260. DOI: https://doi.org/10.1007/s000130050329
- Kaygorodov I. Algebras of Jordan brackets and generalized Poisson algebras. Linear and Multilinear Algebra, 2017, vol. 65, iss. 6, pp. 1142–1157. DOI: https://doi.org/10.1080/03081087.2016.1229257
- Kolesnikov P., Makar-Limanov L., Shestakov I. The Freiheitssatz for generic Poisson algebras. SIGMA, 2014, vol. 10, iss. 115, 15 p. DOI: https://doi.org/10.3842/SIGMA.2014.115
- 1154 reads