Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Sorokina M. M., Novikova D. G. On F^ω-projectors and F^ω-covering subgroups of finite groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 4, pp. 526-535. DOI: 10.18500/1816-9791-2024-24-4-526-535, EDN: KYNPVY

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
25.11.2024
Full text:
(downloads: 122)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
512.542
EDN: 
KYNPVY

On F^ω-projectors and F^ω-covering subgroups of finite groups

Autors: 
Sorokina Marina M., Bryansk State Academician I. G. Petrovski University
Novikova Diana G., Bryansk State Academician I. G. Petrovski University
Abstract: 

Only finite groups are considered. $\frak F$-projectors and $\frak F$-covering subgroups, where $\frak F$ is a certain class of groups, were introduced into consideration by W.~Gaschutz as a natural generalization of Sylow and Hall subgroups in finite groups. Developing Gaschutz's idea, V. A. Vedernikov and M. M. Sorokina defined $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups, where $\omega$ is a non-empty set of primes, and established their main characteristics. The purpose of this work is to study the properties of $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups, establishing their relation with other subgroups in groups. The following tasks are solved: for a non-empty $\omega$-primitively closed homomorph $\frak F$ and a given set $\pi$ of primes, the conditions under which an $\frak F^{\omega}$-projector of a group coincides with its $\pi$-Hall subgroup are established; for a given formation $\frak F$, a relation between $\frak F^{\omega}$-covering subgroups of a group $G=A\rtimes B$ and $\frak F^{\omega}$-covering subgroups of the group $B$ is obtained. In the paper classical methods of the theory of finite groups, as well as methods of the theory of classes of groups are used.

References: 
  1. Gaschutz W. Zur theorie der endlichen auflosbaren Gruppen. Mathematische Zeitschrift, 1962, vol. 80, iss. 4, pp. 300–305 (in German). https://doi.org/10.1007/BF01162386
  2. Schunck H. H-Untergruppen in endlichen auflosbaren gruppen. Mathematische Zeitschrift, 1967, vol. 97, iss. 4, pp. 326–330 (in German). https://doi.org/10.1007/BF01112173
  3. Shemetkov L. A. On the product of formations. Doklady AN BSSR, 1984, vol. 28, iss. 2. pp. 101–103 (in Russian).
  4. Vedernikov V. A., Sorokina M. M. F-projectors and F-covering subgroups of finite groups. Siberian Mathematical Journal, 2016, vol. 57, iss. 6, pp. 957–968. https://doi.org/10.1134/S0037446616060033, EDN: XBEDHB
  5. Gaschutz W. Lectures on Subgroups of Sylow type in finite soluble groups. Notes on pure mathematics, vol. 11. Canberra, Australian National University, 1979. 100 p.
  6. Shemetkov L. A. Formatsii konechnykh grupp [Formations of finite groups]. Moscow, Nauka, 1978. 272 p. (in Russian).
  7. Doerk K., Нawkes T. Finite soluble groups. Berlin, New York, Walter de Gruyter, 1992. 891 p.
  8. Vasil’eva T. I., Prokopenko A. I. Projectors and lattices of normal subgroups of finite groups. Doklady of the National Academy of Sciences of Belarus, 2004, vol. 48, iss. 4, pp. 34–37 (in Russian). EDN: YYBIBN
  9. Erickson R. P. Projectors of finite groups. Communications in Algebra, 1982, vol. 10, iss. 18, pp. 1919–1938. https://doi.org/10.1080/00927878208822814
  10. Forster P. Projektive Klassen endlicher Gruppen I. Schunck- und Gaschutzklassen. Mathematische Zeitschrift, 1984, vol. 186, pp. 149–178 (in German). https://doi.org/10.1007/BF01161802
  11. Vasilyeva T. I. On the intersections of generalized projectors with the products of normal subgroups of finite groups. Problems of Physics, Mathematics and Technics, 2019, iss. 2 (39), pp. 61–65 (in Russian). EDN: ZBSSKX
  12. Monakhov V. S. Vvedenie v teoriyu konechnykh grupp i ikh klassov [Introduction to the theory of f inite groups and their classes]. Minsk, Vysheyshaya shkola, 2006. 207 p. (in Russian).
  13. Kamornikov S. F. On formation subgroups of finite groups. In: Saluk M. I. (ed.) Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp. Trudy Gomel’skogo seminara [Arithmetic and Subgroup Structure of Finite Groups. Work of the Gomel Seminar]. Minsk, Nauka i tekhnika, 1986, pp. 69–74 (in Russian).
  14. Vedernikov V. A., Sorokina M. M. $\omega$-fibered formations and Fitting classes of finite groups. Mathematical Notes, 2002, vol. 71, iss. 1, pp. 39–55. https://doi.org/10.1023/A:1013922206539, EDN: GJVNYM
  15. Skiba A. N., Shemetkov L. A. Multiple $\omega$-local formations and Fitting classes of finite groups. Siberian Advances in Mathematics, 2000, vol. 10, iss. 2, pp. 112–141.
  16. Vedernikov V. A., Sorokina M. M. On properties of  $\frak F^{\omega}$-projectors and  $\frak F^{\omega}$-covering subgroups of finite groups. In: Actual Problems of Applied Mathematics and Physics, May 17–21, 2017, Nalchik–Terskol. Nalchik, IAMA KBSC RAS, 2017, pp. 262–263 (in Russian).
  17. Chunikhin S. A. Podgruppy konechnykh grupp [Subgroups of finite groups]. Minsk, Nauka i tekhnika, 1964. 158 p. (in Russian).
Received: 
19.05.2023
Accepted: 
03.07.2023
Published: 
29.11.2024