Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Roitenberg V. S. On generation of a limit cycle from a separatrix loop of a sewn saddle-node. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 2, pp. 159-168. DOI: 10.18500/1816-9791-2022-22-2-159-168, EDN: QCJQYG

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.05.2022
Full text:
(downloads: 1532)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.925
EDN: 
QCJQYG

On generation of a limit cycle from a separatrix loop of a sewn saddle-node

Autors: 
Roitenberg Vladimir Shleymovich, Yaroslavl State Technical University
Abstract: 

The article considers dynamical systems on the plane, defined by continuous piecewise smooth vector fields. Such systems are used as mathematical models of real processes with switching. An important task is to find the conditions for the generation of periodic trajectories when the parameters change. The paper describes the bifurcation of the birth of a periodic trajectory from the loop of the separatrix of a sewn saddle-node — an analogue of the classical bifurcation of the separatrix loop of a saddle-node of a smooth dynamical system. Consider a one-parameter family $\{ X_\varepsilon  \} $  of continuous piecewise-smooth vector fields on the plane. Let $z^0 $ be a point on the switching line. Let's choose the local coordinates $x,y$ in which $z^0 $ has zero coordinates, and the switching line is given by the equation $y = 0$. Let the vector field $X_0 $  in a semi-neighborhood  $y \ge 0$ ($y \le 0$) coincide with a smooth vector field $X_0^ +  $ ($X_0^ -  $), for which the point $z^0 $ is a stable rough node (rough saddle), and the proper subspaces of the matrix of the linear part of the field in $z^0 $  do not coincide with the straight line $y = 0$. The singular point $z^0 $   is called a sewn saddle-node. There is a single trajectory $L_0 $  that is $\alpha $-limit to $z^0 $ — the outgoing separatrix of the point $z^0 $. It is assumed that $L_0 $  is also $\omega $-limit to $z^0$, and enters $z^0 $  in the leading direction of the node of the field $X_0^ +  $. For generic family, when the parameter $\varepsilon $ changes, the sewn saddle-node either splits into a rough node and a rough saddle, or disappears. In the paper it is proved that in the latter case the only periodic trajectory of the field $X_\varepsilon  $ is generated from the contour $L_0  \cup \{ z^0 \} $ — a stable limit cycle. 

References: 
  1. Andronov A. A., Leontovich E. A. Some cases of dependence of limit cycles on a parameter. Uchenye zapiski Gor’kovskogo gosudarstvennogo universiteta [The Bulletin of Gorky State University], 1939, iss. 6, pp. 3–24 (in Russian).
  2. Shilnikov L. P. Some cases of generation of period motions from singular trajectories. Matematicheskii Sbornik. Novaya Seriya, 1963, vol. 61 (103), no. 4, pp. 443–466 (in Russian).
  3. Roitenberg V. Sh. On generation of stable closed trajectories of discontinuous vector fields. Matematika i matematicheskoe obrazovanie. Teoriya i praktika [Mathematics and mathematical education. Theory and practice]. Iss. 3. Yaroslavl, YaGTU Publ., 2002, pp. 19–23 (in Russian).
  4. Filippov A. F. Differentsial’nye uravneniya s razryvnoy pravoy chast’iu [Differential Equations with Discontinuous Right-hand Part]. Мoscow, Nauka, 1985. 224 p. (in Russian).
  5. di Bernardo M., Budd Ch. J., Capneys A. R., Kowalczyk P. Piecewise-smooth Dynamical Systems. Applied Mathematical Sciences, vol. 163. London, Springer-Verlag, 2008. 483 p. https://doi.org/10.1007/978-1-84628-708-4
  6. Guardia M., Seara T. M., Teixeira M. A. Generic bifurcations of low codimension of planar Filippov systems. Journal of Differential Equations, 2011, vol. 250, no. 4, pp. 1967–2023. https://doi.org/10.1016/j.jde.2010.11.0163
  7. Roitenberg V. Sh. On bifurcations in the neighborhood of a singular point of triple sewn focus type. University Proceedings. Volga Region. Physical and Mathematical Sciences. Mathematics, 2017, no. 2 (42), pp. 18–31 (in Russian). https://doi.org/10.21685/2072-3040-2017-2-2
  8. Simpson D. J. W. Bifurcations in Piecewise-Smooth Continuous Systems. World Scientific Series on Nonlinear Science, Series A, vol. 70. World Scientific Publishing Co. Pte. Ltd, 2010. 256 p. https://doi.org/10.1142/7612
  9. Palis J., de Melo W. Geometric Theory of Dynamical Systems: An Introduction. New York, NY, Springer, 1982. 198 p. https://doi.org/10.1007/978-1-4612-5703-5 (Russ. ed.: Moscow, Mir, 1986. 301 p.).
  10. Fichtenholz G. M. Kurs differentsial’nogo i integral’nogo ischisleniya [Course of Differential and Integral Calculus]. Мoscow, Fizmatgiz, 1962. Vol. 1. 607 p. (in Russian).
  11. Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O. Methods of Qualitative Theory in Nonlinear Dynamics (Part II). World Scientific Series on Nonlinear Science, Series A, vol. 5. River Edge, N.J., World Scientific, 2001. https://doi.org/10.1142/4221 (Russ. ed.: Moscow, Izhevsk, 2009. 548 p.).
Received: 
25.08.2021
Accepted: 
09.02.2022
Published: 
31.05.2022