Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Tlyachev V. B., Ushkho A. D., Ushkho D. S. On periodic solutions of Rayleigh equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 2, pp. 173-181. DOI: 10.18500/1816-9791-2021-21-2-173-181, EDN: DOOKWV

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.05.2021
Full text:
(downloads: 1446)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
501.1
EDN: 
DOOKWV

On periodic solutions of Rayleigh equation

Autors: 
Tlyachev V. B., Caucasus Mathematical Center Adyghe State University
Ushkho A. D., Caucasus Mathematical Center Adyghe State University
Ushkho D. S., Caucasus Mathematical Center Adyghe State University
Abstract: 

New sufficient conditions for the existence and uniqueness of a periodic solution of a system of differential equations equivalent to the Rayleigh equation are obtained. In contrast to the known results, the existence proof of at least one limit cycle of the system is based on applying curves of the topographic Poincare system. The uniqueness of the limit cycle surrounding a complex unstable focus is proved by the Otrokov method.

References: 
  1. Strutt J. (Rayleigh) The Theory of Sound. In 2 vols. Vol. I. London, Macmillan and C◦ , 1894. (Russ. ed.: Moscow, GITTL, 1955. Vol. 1. 503 p.)
  2. Kuznetsov A. P., Seliverstova E. S., Trubetskov D. I., Tyuryukina L. V. Phenomenon of the van der Pol equation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, no. 4, pp. 3–42 (in Russian). https://doi.org/10.18500/0869-6632-2014-22-4-3-42
  3. Andronov A. A., Witt A. A., Haikin S. E. Teoriia kolebanii [Theory of Vibrations]. Moscow, Fizmatgiz, 1959. 916 p. (in Russian).
  4. Anishchenko V. S., Vadivasova T. E. Lektsii po nelineinoi dinamike [Lectures on Nonlinear Dynamics]. Moscow, Izhevsk, NITs “Reguliarnaia i khaoticheskaia dinamika”, 2011. 516 p. (in Russian).
  5. Gains R. E., Mawhin J. L. Coincidence Degree, and Nonlinear Differential Equations. Lecture Notes in Mathematics. Berlin, Heidelberg, Springer, 1977. Vol. 568. 241 p. https://doi.org/10.1007/BFb0089537
  6. Plesset M. S., Prosperetti A. Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, 1977, vol. 9, pp. 145–185. https://doi.org/10.1146/annurev.fl.09.010177.001045
  7. Reissig R., Sansone G., Conti R. Qualitative Theorie Nichtlinearer Differentialgleichungen. Rome, Edizioni Cremonese, 1963. 382 p. (Russ. ed.: Moscow, Nauka, 1974. 318 p.).
  8. Wang Z. On the existence of periodic solutions of Rayleigh equations. Zeitschrift fur angewandte Mathematik und Physik, 2005, vol. 56, no. 4, pp. 592–608. https://doi.org/10.1007/s00033-004-2061-z
  9. Wang Y., Dai X.-Z. Existence and stability of periodic solutions of a Rayleigh type equation. Bulletin of the Australian Mathematical Society, 2009, vol. 79, iss. 3, pp. 377–390. https://doi.org/10.1017/S0004972708001135
  10. Guo Y., Wang Y., Zhou D. A new result on the existence of periodic solutions for Rayleigh equation with a singularity. Advances in Difference Equations, 2017. Article number 394. https://doi.org/10.1186/s13662-017-1449-y
  11. Alzabut J., Tunc C. Existence of Periodic solutions for a type of Rayleigh equation with state-dependent delay. Electronic Journal of Differential Equations, 2012, vol. 77, pp. 1–8.
  12. Li Y., Huang L. New results of periodic solution for forced Rayleigh-type equation. Journal of Computational and Applied Mathematics, 2008, vol. 221, iss. 1, pp. 98–105. https://doi.org/10.1016/j.cam.2007.10.005
  13. Kumakshev S. A. Investigation of regular and relaxation oscillations in the Rayleigh and van der Pol oscillators. Bulletin of the Lobachevsky University of Nizhny Novgorod, 2011, no. 4 (2), pp. 203–205 (in Russian).
  14. Stoker J. Nonlinear Vibrations in Mechanical and Electrical Systems. New York, Interscience Publishers, 1950. 273 p. (Russ. ed.: Moscow, Izdatel’stvo inostrannoi literatury, 1952. 264 p.).
  15. Coddington E. A., Levinson N. Theory of Ordinary Differential Equations. New York, McGraw-Hill, 1955. 429 p. (Russ. ed.: Moscow, Izdatel’stvo inostrannoi literatury, 1958. 474 p.).
  16. Zhitelzeif E. D. The limit cycles of the Rayleigh equation. Differentsial’nye Uravneniya [Differential Equations], 1972, vol. 8, no. 7, pp. 1309–1311 (in Russian).
  17. Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G. Qualitative Theory of Second-Order Dynamic Systems. Jerusalem, New York, John Wiley, 1973, 524 p. (Russ. ed.: Moscow, Nauka, 1966. 568 p.).
  18. Otrokov N. F. Analiticheskie integraly i predel’nye tsikly [Analytical Integrals and Limit Cycles]. Gorky, Volgo-Viatskoe knizhnoe izdatel’stvo, 1972. 216 p.
Received: 
18.05.2020
Accepted: 
31.10.2020
Published: 
31.05.2021