For citation:
Ratseev S. M. On Poisson Customary Polynomial Identities. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, vol. 14, iss. 2, pp. 150-155. DOI: 10.18500/1816-9791-2014-14-2-150-155, EDN: SHHIDV
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
09.06.2014
Full text:
(downloads: 184)
Language:
Russian
Heading:
UDC:
512.572
EDN:
SHHIDV
On Poisson Customary Polynomial Identities
Autors:
Ratseev Sergey Mihailovich, Ulyanovsk State University
Abstract:
We study Poisson customary and Poisson extended customary polynomials. We show that the sequence of codimensions {rn(V )}n¸1 of every extended customary space of variety V of Poisson algebras over an arbitrary field is either bounded by a polynomial or at least exponential. Furthermore, if this sequence is bounded by polynomial then there is a polynomial R(x) with rational coefficients such that rn(V ) = R(n) for all sufficiently large n. We present lower and upper bounds for the polynomials R(x) of an arbitrary fixed degree.
References:
- Farkas D. R. Poisson polynomial identities. Comm. Algebra, 1998, vol. 26, no. 2, pp. 401–416.
- Farkas D. R. Poisson polynomial identities. II. Arch. Math. (Basel), 1999, vol. 72, no. 4, pp. 252–260.
- Bahturin Yu. A. Identical relations in Lie algebras. Utrecht, VNU Sci. Press, 1987. 309 p. (Rus. ed. : Bahturin Yu. A. Tozhdestva v algebrah Li. Moscow, Nauka, 1985).
- Giambruno A., Zaicev M. V. Polynomial Identities and Asymptotic Methods. Math. Surv. and Monographs. Providence, R.I., American Math. Soc., 2005, vol. 122.
- Ratseev S. M. Poisson algebras of polynomial growth. Siberian Math. J. 2013, vol. 54, no. 3, pp. 555–565.
- Mishchenko S. P., Petrogradsky V. M., Regev A. Poisson PI algebras. Trans. Amer. Math. Soc., 2007, vol. 359, no. 10, pp. 4669–4694.
- Cherevatenko O. I. On nilpotent Leibnitz algebras. Nauchnyye vedomosti BelGU. Ser. Matematika. Fizika [Belgorod State University Scientific Bulletin. Ser. Mathematics. Physics], 2012, no. 23(142), iss. 29, pp. 14–16.
Received:
17.11.2014
Accepted:
01.04.2014
Published:
30.05.2014
Short text (in English):
(downloads: 163)
- 1144 reads