Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Kovalev V. A., Radayev Y. N. On precisely conserved quantities of coupled micropolar thermoelastic field. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2012, vol. 12, iss. 4, pp. 71-79. DOI: 10.18500/1816-9791-2012-12-4-71-79

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 191)

On precisely conserved quantities of coupled micropolar thermoelastic field

Kovalev Vladimir Aleksandrovich, Moscow City Government University of Management Moscow, Russia
Radayev Yuri Nickolaevich, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

The paper is devoted to the 4-covariant formulation in fourdimensional space-time of dynamics of non-linear hyperbolic micropolar thermoelastic continuum. Theory ofmicropolar continuum are due to E. Cosserat and F. Cosserat and their study of 1909. The complement microdeformations and microrotations of an element are described by a non-rigid trihedron (the case of deformable micropolar directors). Hyperbolic micropolar type-II thermoelastic continuum is considered as a physical field theory with the action density taking account of wave nature of heat transport (the second sound phenomenon in solids) according to the Green&Naghdi type-II model. The principle of the least action for a micropolar thermoelastic field is formulated. The canonical Euler–Lagrange field equations are derived from the principle of least action. These equations include a hyperbolic heat transport equation. Currents corresponding 4-translations and 4-rotations of the four-dimensional space-time are obtained. The 4-covariant representations are rewritten in threedimensional forms as usual for continuum mechanics. The currents are required in order to formulate conservation laws particularly the conservation of energy. The latter may be represented as path- or surface-independent integrals known from the continuum mechanics and often used in applied problems. Regular explicit covariant formulae for the field current are obtained provided the symmetry group of the variational action functional is known. Explicit covariant formulae for the canonical energy-momentum and angular momentum tensors are also given. Precisely conserved quantities (among them the total canonical angular momentum) for a micropolar thermoelastic field are discussed. 

  1. Ковалев В. А., Радаев Ю. Н. Элементы теории поля : вариационные симметрии и геометрические инварианты. М. : Физматлит, 2009. 156 с.
  2. Truesdell C., Toupin R. A. The Classical Field Theories // Principles of Classical Mechanics and Field Theory. Encyclopedia of Physics. Vol. III/1 / ed. S. Flugge. Berlin; G¨ottingen; Heidelberg : Springer, 1960. P. 226–793.
  3. Cosserat E., Cosserat F. Th´eorie des corps d´eformables. Paris : Librairie Scientifique A. Hermann et Fils, 1909. 226 p. 
  4. Toupin R. A. Theories of Elasticity with Couple-Stress // Arch. Rational Mech. Anal. 1964. Vol. 17, № 5. P. 85–112.
  5. Ковалев В. А., Мельников А. Д., Радаев Ю. Н. О гиперболических уравнениях связанного микрополярного термоупругого поля // Математическая физика и ее приложения : материалы Второй междунар. конф. /под ред. чл.-корр. РАН И. В. Воловича и д-ра физ.-мат. наук, проф. Ю. Н. Радаева. Самара : Книга, 2010. С. 156–164.
  6. Ковалев В. А., Радаев Ю. Н. Волновые задачи теории поля и термомеханика. Саратов : Изд-во Сарат. ун-та, 2010. 328 с.
  7. Ковалев В. А., Радаев Ю. Н. Вывод тензоров энергии–импульса в теориях микрополярной гиперболической термоупругости // Изв. РАН. МТТ. 2011. № 5. С. 58–77.
  8. Ковалев В.А., Радаев Ю.Н. О некоторых новых направлениях развития полевых теорий механики сплошных сред // V сессия Научного совета РАН по механике деформируемого твердого тела : тез. докл. Всерос. конф., 31 мая – 5 июня, 2011 г., Астрахань, Россия. Астрахань : Изд-во АГТУ, 2011. С. 26–28.
  9. Радаев Ю. Н. Гиперболические теории и задачи механики деформируемого твердого тела // Современные проблемы механики : тез. докл. междунар. конф., посвящ. 100-летию Л. А. Галина. М., 2012. С. 75–76.
  10. Ковалев В. А., Радаев Ю. Н. Теоретико-полевые формулировки и модели нелинейной гиперболической микрополярной термоупругости // XXXVI Дальневосточная математическая школа-семинар им. акад. Е. В. Золотова (4–10 сентября 2012 г., Владивосток) : сб. докл. Владивосток : ИАПУ ДВО РАН, 2012. С. 137–142.
  11. Noether E. Invariante Variationsprobleme // Nachrichten von der K¨oniglichen Gesellschaft der Wissenschaften zu G¨ottingen. Mathematisch-Physikalische Klasse. 1918. H. 2. S. 235–257; Нетер Э. Инвариантные вариацион- ные задачи // Вариационные принципы механики. М. : Физматгиз, 1959. С. 611–630.