Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Kovalev V. A., Radayev Y. N. On Rationally Complete Algebraic Systems of Finite Strain Tensors of Complex Continua. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2017, vol. 17, iss. 1, pp. 71-84. DOI: 10.18500/1816-9791-2017-17-1-71-84, EDN: YNBYCF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 177)

On Rationally Complete Algebraic Systems of Finite Strain Tensors of Complex Continua

Kovalev Vladimir Aleksandrovich, Moscow City Government University of Management Moscow, Russia
Radayev Yuri Nickolaevich, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

The paper is devoted to the mathematical description of complex continua and the systematic derivation of strain tensors by the notion of isometric immersion of complex continuum in a plane space of higher dimension. Problem of establishing of complete systems of irreducible objective strain and extra-strain tensors for complex continuum immersed in an external plane space is considered. The solution to the problem is given by methods of the field theory and the theory of algebraic invariants. Strain tensors are obtained as irreducible algebraic invariants of contravariant vectors of the external space emerging in the complex continuum action density. Considerations are restricted to rational algebraic invariants. Completeness criteria for systems of rational algebraic invariants and rational syzygies are discussed and applied to strain tensors of micropolar elastic continua. Objective strain tensors of micropolar continuum are alternatively obtained by combining multipliers of polar decompositions of strain and extra-strain gradients.

  1. Sedov L. I. Vvedenie v mekhaniku sploshnykh sred [An Introduction to Continuum Mechanics]. Moscow, Fizmatgiz, 1962. 284 p. (in Russian).
  2. Illyushin A. A. Mekhanika sploshnykh sred [Continuum Mechanics]. Moscow, Moscow University Press, 1978. 287 p. (in Russian).
  3. Cosserat E. et F. Theorie des corps d ´ eformables ´ . Paris, Librairie Scientifique A. Hermann et Fils, 1909. 226 p.
  4. Rashevskii P. K. Rimanova geometriia i tenzornyi analiz [Riemannian Geometry and Tensor Calculus]. Moscow, Nauka, 1967. 664 p. (in Russian).
  5. Eisenhart L. P. Rimanova geometriia [Riemannian Geometry]. Moscow, Izd. Inostr. Lit., 1948. 316 p. (in Russian).
  6. Kovalev V. A., Radayev Yu. N. Elementy teorii polia: variatsionnye simmetrii i geometricheskie invarianty [Elements of the Field Theory: Variational Symmetries and Geometric Invariants]. Moscow, Fizmatlit, 2009. 156 p. (in Russian). 
  7. Kovalev V. A., Radayev Yu. N. Volnovye zadachi teorii polia i termomekhanika [Wave Problems of Field Theory and Thermomechanics]. Saratov, Saratov Univ. Press, 2010. 328 p. (in Russian).
  8. Gurevich G. B. Osnovy teorii algebraicheskikh invariantov [Elements of Theory of Algebraic Invariants]. Moscow, Leningrad, Gostechteretizdat, 1948. 408 p. (in Russian).
  9. Berdichevskii V. L. Variatsionnye printsipy mekhaniki sploshnoi sredy [Variational Principles of Continuum Mechanics]. Moscow, Nauka, 1983. 448 p. (in Russian).
  10. Green A. E., Adkins J. E. Large Elastic Deformations and Non-linear Continuum Mechanics. London, Oxford Univ. Press, 1960. 348 p. (Russ. ed.: Green A., Adkins J. Bol’shie uprugie deformatsii i nelineinaia mekhanika sploshnoi sredy. Moscow, Mir, 1965. 456 p.)
  11. Horn R., Johnson H. Matrix Analysis. Cambridge, Cambridge University Press, 1990. 561 pp. (Russ. ed.: Horn R., Johnson H. Matrichnyi analiz. Moscow, Mir, 1989. 656 p.)