Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Rasulov K. M., Mikhalyova T. I. On a solution of a nondegenerate boundary value problem of Carleman type for quasiharmonic functions in circular domains. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 3, pp. 307-314. DOI: 10.18500/1816-9791-2022-22-3-307-314

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.08.2022
Full text:
(downloads: 216)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.968.23
EDN: 
MXESPP

On a solution of a nondegenerate boundary value problem of Carleman type for quasiharmonic functions in circular domains

Autors: 
Rasulov Karim M., Smolensk State University
Mikhalyova Tatyana Igorevna, Smolensk State University
Abstract: 

This paper considers a Carleman type boundary value problem for quasiharmonic functions. The boundary value problem is an informal model of a Carleman type differential problem for analytic functions of a complex variable.This paper presented a complex-analytical method for solving the problem under consideration in circular domains, which makes it possible to establish the instability of its solutions concerning small contour changes.

References: 
  1. Rasulov K. M. Metod sopriazheniya analiticheskikh funktsiy i nekotorye ego prilozheniya [Conjugation Method of Analytic Functions and Some of Its Applications]. Smolensk, SmolSU Publ., 2013. 188 p. (in Russian).
  2. Rasulov K. M. On the uniqueness of the solution of the Dirichlet boundary value problem for queasiharmonic functions in a non-unit disk. Lobachevskii Journal of Mathematics, 2018, vol. 39, iss. 1, pp. 142—145. https://doi.org/10.1134/S1995080218010237
  3. Bauer K. W. Uber eine der Differentialgleichung (1+zz)2Wzz ±n(n+1)W = 0 zugeordnete Funktionentheorie. Bonner Mathematische Schriften, 1964, Nr. 23, S. 1–98.
  4. Bauer K. W., Ruscheweyh S. Differential Operators for Partial Differential Equations and Function Theoretic Applications. Berlin, Heidelberg, New York, Springer-Verlag, 1980. 253 p. https://doi.org/10.1007/BFb0103468
  5. Vekua N. P. Sistemy singuliarnykh integral’nykh uravneniy [Systems of Singular Integral Equations]. Moscow, Nauka, 1970. 379 p. (in Russian).
  6. Gahov F. D. Kraevye zadachi [Boundary Value Problems]. Moscow, Nauka, 1977. 640 p. (in Russian).
  7. Litvinchuk G. S. Kraevye zadachi i singuliarnye integral’nye uravneniya so sdvigom [Boundary Value Problems and Singular Integral Equations with Shift]. Moscow, Nauka, 1977. 448 p (in Russian).
  8. Begehr H. Complex Analytic Methods for Partial Differential Equations. Singapore, World Scientific Publishing, 1994. 273 p.
  9. Coddington E. A., Levinson N. Theory of Ordinary Differential Equations. McGraw-Hill Companies, 1955. 429 p. (Russ. ed.: Moscow, Foreign Languages Publishing House, 1958. 474 p.).
Received: 
22.03.2022
Accepted: 
19.04.2022
Published: 
31.08.2022