For citation:
Agafonova N. Y. On the L1-convergence of Series in Multiplicative Systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 4, pp. 371-377. DOI: 10.18500/1816-9791-2016-16-4-371-377, EDN: XHPYFF
On the L1-convergence of Series in Multiplicative Systems
In the paper two analogs of Garrett – Stanojevic´ trigonometric results are established for multiplicative systems {χn} ∞n=0 of bounded type. First, the modified partial sums of a series P∞ k=0 akχk with coefficients of bounded variation converge in L 1 [0, 1) to its sum if and only if for all ε > 0 there exists δ > 0 such that R δ 0 ¯ ¯ ¯ ¯ P∞ k=n (ak − ak+1)Dk+1(x) ¯ ¯ ¯ ¯ dx < ε, n ∈ Z+, where Dk+1(x) = Pk i=0 χi(x). Secondly, if limn→∞ an ln(n + 1) = 0 and P∞ k=n |ak − ak+1| 6 Can, n ∈ Z+, then the series P∞ n=0 anχn(x) converges to its sum f(x) in L 1 [0, 1) if and only if f ∈ L 1 [0, 1).
- Golubov B. I., Efimov A. V., Skvortsov V. A. Walsh series and transforms. Theory and applications. Dordrecht, Kluwer Academic Publ., 1991. 380 p.
- Onneweer C. W. On Moduli of Continuity and Divergence of Fourier Series on Groups // Proc. Amer. Math. Soc. 1971. Vol. 29, № 1. P. 109–112. DOI: https://doi.org/10.2307/2037681.
- Yano Sh. On Walsh – Fourier series // Tohoku Math. J. 1951. Vol. 3, № 2. P. 223–242. DOI: https://doi.org/10.2748/tmj/1178245527.
- Kolmogoroff A. Sur l’ordre de grandeur des coefficient de la serie de Fourier – Lebesgue // Bull. Acad. Polon. 1923. Iss. A. P. 83–86.
- Garrett J. W., Stanojevic´ Cˇ. V. On L 1 convergence of certain cosine sums // Proc. Amer. Math. Soc. 1976. Vol. 54, № 1. P. 101–105. DOI: https://doi.org/10.1090/S0002-9939-1976-0394002-8.
- Garrett J. W., Stanojevi’c Cˇ. V. Necessary and sufficient conditions for L 1 convergence of trigonometric series // Proc. Amer. Math. Soc. 1976. Vol. 60, № 1. P. 68–71. DOI: https://doi.org/10.1090/S0002-9939-1976-0425480-3.
- Agaev G. N., Vilenkin N. Ya., Dzafarli G. M., Rubinstein A. I. Mul’tiplikativnye sistemy funkcij i garmonicheskij analiz na nul’mernyh gruppah [Multiplicative Systems of Functions and Harmonic Analysis on Zero-dimensional Groups]. Baku, ELM, 1981. 180 p. (in Russian).
- Iofina T. V., Volosivets S. S. On the degree of approximation by means of Fourier – Vilenkin series in Holder and Lp norm // East J. Approx. 2009. Vol. 15, № 3. P. 143–158.
- Volosivets S. S., Fadeev R. N. Estimates of best approximations in integral metrics and Fourier coefficients with respect to multiplicative systems // Analysis Mathematica. 2011. Vol. 37, № 3. P. 215– 238. DOI: https://doi.org/10.1007/s10476-011-0304-8.
- Zelin H. The derivatives and integrals of fractional order in Walsh-Fourier analysis, with applications to approximation theory // J. of Approx. Theory. 1983. Vol. 39, iss. 4. P. 361–373. DOI: https://doi.org/10.1016/0021-9045(83)90079-5.
- 1174 reads