For citation:
Laurin?cikas A. P., Macaitiene R. .., Mokhov D. .., Siauciunas D. On Universality of Certain Zeta-functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 4, pp. 67-72. DOI: 10.18500/1816-9791-2013-13-4-67-72
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
25.11.2013
Full text:
(downloads: 223)
Language:
Russian
Heading:
UDC:
511.3
On Universality of Certain Zeta-functions
Autors:
Laurin?cikas Antanas P., Vilnius University, Vilnius, Lithuania
Macaitiene Renata ., Šiauliai University, Šiauliai, Lithuania
Mokhov Dmitry ., Vilnius University, Vilnius, Lithuania
Siauciunas Darius, Šiauliai University, Šiauliai, Lithuania
Abstract:
It is well known that a generalization of the Hurwitz zeta-function—the periodic Hurwitz zeta-function with transcendental parameter is universal in the sense that its shifts approximate any analytic function. In the paper, the transcendence condition is replaced by a simpler one on the linear independence of a certain set.
References:
- Javtokas A., Laurincˇ ikas A. The universality of the periodic Hurwitz zeta-function // Integral Transforms Spec. Funct. 2006. Vol. 17, № 10. P. 711–722.
- Cassels J. W. S. Footnote to a note of Davenport and Heilbronn // J. London Math. Soc. 1961. Vol. 36. P. 171–184.
- Laurincˇ ikas A., Garunksˇ tis R. The Lerch Zeta-Function. Dordrecht : Kluwer, 2002. 189 p.
- Heyer H. Probability Measures on Locally Compact Groups. Berlin : Springer, 1977. 531 p.
- Billingsley P. Convergence of Probability Measures. N.Y. : Wiley, 1968. 272 p.
- Javtokas A., Laurincˇ ikas A. On the periodic zetafunction // Hardy-Ramanujan J. 2006. Vol. 29. P. 18–36.
- Mergelyan S. N. Uniform approximation to functions of complex variable // Usp. Matem. Nauk. 1952. Vol. 7. P. 31–122.
Short text (in English):
(downloads: 95)
- 1164 reads