Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Buzmakova M. M. Percolation of spheres in continuum. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2012, vol. 12, iss. 2, pp. 48-56. DOI: 10.18500/1816-9791-2012-12-2-48-56

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 201)

Percolation of spheres in continuum

Buzmakova Mariya Mikhailovna, Astrakhan State University, Russia

The model of the continuum percolation of hard spheres with permeable shells, which describes phase transition sol-gel, has been investigate. Spheres have hard parts in radii r, which can't be blocked with each other, and permeable shells in width d, which can be blocked. Such spheres of the equal size have been randomly packing in the cub with linear size L. The probability of joining the spheres in a cluster is proportional to the volume of overlapping of permeable shells. Spheres belong to a cluster, if a communication between spheres arises. The percolation cluster is the cluster connecting bottom and top sides of the cube. The packing fraction, at which probability of occurrence of the percolation cluster is 0.5, is called as the percolation threshold. The percolation threshold corresponds to the gel point. The dependency of the percolation threshold of the hard spheres with permeable shells from a thickness of the shell has been obtained. 

  1. Савина Л. В. Кристаллоскопические структуры сыворотки крови здорового и больного человека. Краснодар : Сов. Кубань, 1999. 96 с.
  2. Шабалин В. Н., Шатохина С. Н. Морфология биологических жидкостей человека. М. : Хризостом, 2001. 304 с.
  3. Рапис Е. Г. Белок и жизнь (самоорганизация, самосборка и симметрия наноструктур белка). Иерусалим : Филобиблон; М. : Милта-ПКП ГИТ, 2002. 257 с.
  4. Pauchard L., Parisse F., Allain C. Influence of salt content on crack patterns formed through colloidal suspension desiccation // Phys. Rev. E. 1999. Vol. 59, № 3. P. 3737–3740.
  5. Яхно Т. А., Яхно В. Г., Санин А. Г., Санина О. А., Пелюшенко А. С. Белок и соль: пространственно-временные события в высыхающей капле // Журн. техн. физики. 2004. Т. 74, № 8. С. 100–108.
  6. Яхно Т. А., Яхно В. Г. Основы структурной эволюции высыхающих капель биологических жидкостей // Журн. технической физики. 2009. Т. 79, № 8. С. 133–141.
  7. Stauffer D., Aharony A. Introduction to Percolation Theory. L. : Taylor & Francis, 1992. 181 p.
  8. Sahimi M. Application of Percolation Theory. L. :Taylor & Francis, 1994. 258 p.
  9. Займан Д. Модели беспорядка. Теоретическая физика однородно неупорядоченных систем. М. : Мир, 1982. 591 с.
  10. Федер Е. Фракталы. М. : Мир, 1991. 254 с.
  11. Ohira K., Sato M., Kohmoto M. Fluctuations in chemical gelation // Phys. Rev. E. 2007. Vol. 75, iss. 4,041402.
  12. Gado E., Fierro A., Arcangelis L., Coniglio A. Slow dynamics in gelation phenomena: From chemical gels to colloidal glasses // Phys. Rev. E. 2004. Vol. 69, iss. 5,051103.
  13. Jespersen S. Cluster diffusion at the gelation point // Phys. Rev. E. 2002. Vol. 66, iss. 3, 031502.
  14. Vernon D., Plischke M. Viscoelasticity near the gel point: A molecular dynamics study // Phys. Rev. E. 2001.Vol. 64, iss. 3, 031505.
  15. Vernon D. Model for gelation with explicit solvent effects: Structure and dynamics / D. Vernon, M. Plischke // Phys. Rev. E. 2003. Vol. 67, iss. 1, 011401.
  16. Monkos K. Determination of some hydrodynamic parameters of ovine serum albumin solutions using viscometric measurements // J. of Biological Phys. 2005 Vol. 31. P. 219–232.
  17. Rottereau M., Gimel J., Nicolai T., Durand D. 3d Monte Carlo simulation of site-bond continuum percolation of spheres // The European Physical J. E: SoftMatter and Biological Physics. 2003. Vol. 11. P. 61–64.
  18. Johner N., Grimaldi C., Balberg I., Ryser P. Transport exponent in a three-dimensional continuum tunnelingpercolation model // Phys. Rev. B. 2008. Vol. 77, iss. 17, 174204.
  19. Matsumoto M. Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator // ACM Trans. on Modeling and Computer Simulations. 1998. Vol. 8, № 1. P. 3–30.
  20. Hoshen J., Kopelman R. Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm // Phys. Rev. B. 1976. Vol. 14, № 8. P. 3438–3445.
  21. Rubin F. The Lee Path Connection Algorithm // IEEE Transactions on Computers. 1974. Vol. 23. P. 907–914.
  22. Тейлор Д. Введение в теорию ошибок / пер. с англ. М. : Мир, 1985. 272 с.
  23. Тарасевич Ю. Ю. Перколяция: теория, приложения, алгоритмы. М. : Едиториал УРСС, 2002. 112 с.
  24. Balberg I., Binenbaum N. Invariant properties of the percolation thresholds in the soft-core-hard-core transition // Phys. Rev. A. 1987. Vol. 35, № 12. P. 5174– 5177.
  25. Эфрос А. Л. Физика и геометрия беспорядка. М. :Наука, 1982. 260 с.
  26. Zhydkov V. 3D continuum percolation approach and its application to lava-like fuel-containing materials behavior forecast // Condensed Matter Phys. 2009. Vol. 12, № 2. P. 193–203.