For citation:
Shishkin A. B. Projective and injective descriptions in the complex domain. Duality. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, vol. 14, iss. 1, pp. 47-65. DOI: 10.18500/1816-9791-2014-14-1-47-65, EDN: SCSSRV
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
25.03.2014
Full text:
(downloads: 224)
Language:
Russian
Heading:
UDC:
517.5
EDN:
SCSSRV
Projective and injective descriptions in the complex domain. Duality
Autors:
Shishkin Andrei Borisovich, Kuban State University
Abstract:
Research of a invariant subspaces of a differential operators infinite order in a complex domain generated many issues, related with transition to dual problems. This work devoted overcome these difficulties
Key words:
References:
- Rellich F. Spektraltheorie in nichtseparablen R ¨ aumen. Math. Ann., 1934, vol. 110, pp. 342–356.
- Schwartz L. Th ´ eorie g ´ en ´ erale des fonctions moyennep ´ eriodiques. Ann. of Math. (2), 1947, vol. 48, pp. 857–929.
- Tkachenko V. A. Spectral theory in spaces of analytic functionals for operators generated by multiplication bythe independent variable. Mathematics of the USSRSbornik, 1981, vol. 40, no. 3, pp. 387–427.
- Merzlyakov S. G., Invariant subspaces of the operator of multiple differentiation. Mathematical Notes, 1983,vol. 33, no. 5, pp. 701—713.
- Shishkin A. B. Spectral synthesis for an operator generated by multiplication by a power of the independent variable. Mathematics of the USSR-Sbornik, 1992,vol. 73, no. 1, pp. 211–229.
- Krasichkov-Ternovskii I. F. Spectral synthesis in a complex domain for a differential operator with constant coefficients. I : A duality theorem. Mathematics of the USSR-Sbornik, 1993, vol. 74, no. 2, pp. 309–335.
- Shishkin A. B. Spectral synthesis for systems of differential operators with constant coefficients. Mathematics of the USSR-Sbornik, 2003, vol. 194, no. 12,pp. 1865–1898.
- Shishkin A. B. Spectral synthesis for systems of differential operators with constant coefficients. Duality theorem. Mathematics of the USSR-Sbornik, 1998, vol. 189, no. 9, pp. 1423–1440.
- Chernyshev A. N. Spectral synthesis for infinitely differential operator with constant coefficients. Duality theorem. Trudi FORA, 2001, vol. 6, pp. 75–87 (in Russian).
- Edwards R. E. Functional Analysis. Theory and Applications. New York, Holt, Rinehart and Winston,1965.
- Gunning R. C., Rossi H. Analytic functions of several64 Научный отдел В. А. Юрко. Об обратной задаче для дифференциальных операторов на графе-ежеcomplex variables. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965, 317 p. (Rus. ed. : Gunning R., Rossi Kh. Analiticheskie funktsii mnogikh kompleksnykhperemennykh. Moscow, Mir, 1969, 395 p.)
- Hermander L. An introduction to the theory offunctions of several complex variables (Rus. ed. : Hermander L. Vvedenie v teoriyu funktsii neskol’kikh kompleksnykh peremennykh. Moscow, Mir, 1968, 279 p.)
- Krasichkov-Ternovskii I. F. Local description of closed ideals and submodules of analytic functions of one variable. II. Mathematics of the USSR-Izvestiya, 1980, vol. 14, no. 2, pp. 289–316
Received:
19.08.2013
Accepted:
21.01.2014
Published:
28.02.2014
- 1024 reads