For citation:
Antonov S. Y., Antonova A. V. Quasi-Polynomials of Capelli. II. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, vol. 20, iss. 1, pp. 4-16. DOI: 10.18500/1816-9791-2020-20-1-4-16, EDN: AXSHCX
Quasi-Polynomials of Capelli. II
This paper observes the continuation of the study of a certain kind of polynomials of type Capelli (Capelli quasi-polynomials) belonging to the free associative algebra F{X S Y} considered over an arbitrary field F and generated by two disjoint countable sets X and Y . It is proved that if char F = 0 then among the Capelli quasi-polynomials of degree 4k − 1 there are those that are neither consequences of the standard polynomial S − 2k nor identities of the matrix algebra Mk(F). It is shown that if char F = 0 then only two of the six Capelli quasi-polynomials of degree 4k − 1 are identities of the odd component of the Z2-graded matrix algebra Mk+k(F). It is also proved that all Capelli quasi-polynomials of degree 4k + 1 are identities of certain subspaces of the odd component of the Z2-graded matrix algebra Mm+k(F) for m > k. The conditions under which Capelli quasi-polynomials of degree 4k + 1 being identities of the subspace M (m,k) 1 (F) are given.
- Antonov S. Yu. Some types of identities of subspaces M (m,k) 0 (F), M(m,k) 1 (F) of matrix superalgebra M(m,k) (F). Uchenye Zapiski Kazanskogo Universiteta. Seriya FizikoMatematicheskie Nauki, 2012, vol. 154, book 1, pp. 189–201 (in Russian).
- Antonov S. Yu., Antonova A. V. Quasi-polynomials of Capelli. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2015, vol. 15, iss. 4, pp. 371–382 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2015-15-4-371-382
- Birmajer D. Polynomial detection of matrix subalgebras. Proc. Amer. Math. Soc., 2004, vol. 133, no. 4, pp. 1007–1012.
- Chang Q. Some consequences of the standard polynomial. Proc. Amer. Math. Soc., 1988, vol. 104, no. 3, pp. 707–710.
- Kostant B. A theorem of Frobenius, a theorem of Amitsur–Levitzki, and cohomology theory. J. Math. Mech., 1958, vol. 7, pp. 237–264.
- Rowen L. H. Standard polynomials in matrix algebras. Proc. Amer. Math. Soc., 1974, vol. 190, pp. 253–284.
- Wenxin M., Racine M. Minimal identities of symmetric matrices. Proc. Amer. Math. Soc., 1990, vol. 320, no. 1, pp. 171–192.
- Vincenzo O. M. On the graded identities of M1,1(E). Israel J. Math., 1992, vol. 80, no. 3, pp. 323–335.
- Mattina D. On the graded identities and cocharacters of the algebra of 3x3 matrices. J. Linear Algebra App., 2004, vol. 384, pp. 55–75. DOI: https://doi.org/10.1016/S0024- 3795(04)00034-5
- Aver’yanov I. V. Basis of graded identities of the superalgebra M1,2(F). Math. Notes, 2009, vol. 85, pp. 467–483. DOI: https://doi.org/10.1134/S0001434609030195
- Vincenzo O. M. Z2-graded polynomial identities for superalgebras of block-triangular matrices. Serdica Math. J., 2004, vol. 30, pp. 111–134.
- Vincenzo O. M. Z2-graded cocharacters for superalgebras of triangular matrices. J. of Pure and Applied Algebra, 2004, vol. 194, iss. 1–2, pp. 193–211. DOI: https://doi.org/10.1016/j.jpaa.2004.04.004
- Amitsur S. A., Levitzki J. Minimal identities for algebras. Proc. Amer. Math. Soc., 1950, vol. 1, no. 4, pp. 449–463.
- Antonov S. Yu., Antonova A. V. To Chang Theorem. II. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2017, vol. 17, iss. 2, pp. 127–137 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2017-17-2-127-137
- 1220 reads