Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Gumenuk P. A. Siegеl disks and basins of attraction for families of analytic functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2005, vol. 5, iss. 1, pp. 12-26. DOI: 10.18500/1816-9791-2005-5-1-12-26, EDN: WXACJP

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.09.2005
Full text:
(downloads: 181)
Language: 
Russian
Heading: 
UDC: 
517.538.7
EDN: 
WXACJP

Siegеl disks and basins of attraction for families of analytic functions

Autors: 
Gumenuk Pavel Anatol'evich, Saratov State University
Abstract: 

Let U ∋ 0 be a hyperbolic domain, α ∈ R\Q, let ∆ be a Stolz angle at λ0 = e2πα with respect to the unit disk D, and W a domain containing the point λ0. Consider an analytic family f ⋅ W × U → C ; (λ, z) ↦ fλ(z) consisting of analytic functions in the domain U with the following expansion fλ(z) = λz + α2(λ)z2 + , λ ∈ W, for small z. Let A* (0, fλ, U) be the maximal domain A ⊂ U, such that 0 ∈ A and fl (A) ⊂ A, or the set {0} if there exist no such domains. We prove, that if a sequence {λ0 ∈ W ∩ Δ} n∈N converges to λ0 and S := A* (0, fλ, U) ≠ {0},  then the sequence of the domains A* (0, fλ, U) converges to S as to the kernel. An example shows, that the analogous statement for convergence with respect to the Hausdorff metric does not hold. In the case S ⊂ U we obtain an asymptotic estimate for the size of the neighbourhood V = V (K) of the point λ0 , such that a given compact K ⊂ S lies in A* (0, fl, U) for all λ ∈ V ∩ Δ.

References: 
  1. Милнор Дж. Голоморфная динамика / Пер. с англ. Ижевск, 2000 (Milnor J. Dynamics in One Complex Variable. Vieweg, 2000).
  2. Bargmann D. Conjugations on rotation domains as limit functions of the geometric means of the iterates // Annales Academi Scientiarum Fennic. Mathematica. 1998. V. 23. P. 507–524.
  3. Beardon A.F. Iteration of Rational Functions. N.Y., 1991.
  4. Carleson L., Gamelin T.W. Complex Dynamics. N.Y., 1993.
  5. Еременко А.Э., Любич М.Ю. Динамика аналитических отображений // Алгебра и анализ. 1989. Т. 1, № 3. С. 1–70.
  6. Bergweiler W. An introduction to complex dynamics // Textos de Matematica Universidade de Coimbra. 1995. Ser. B. № 6. P. 1–37.
  7. Bergweiler W. Iteration of meromorphic functions // Bull. Amer. Math. Soc. 1993. V. 29, № 2. P. 151–188.
  8. Голузин Г.М. Геометрическая теория функций комплексного переменного. М., 1966.
  9. Kriete H. Approximation of indifferent cycles // Math. Gottingensis: preprint series. Gottingen, 1996. № 3.
  10. Бухштаб А.А. Теория чисел. М., 1966.
  11. Douady A. Does the Julia set depend continuously on the polynomial? // Proc. Symp. in Appl. Math. 1994. V. 49. P. 91–138.
  12. Kriete H. Continuity of filled-in Julia sets and the closing lemma // Nonlinearity. 1996. V. 9. P. 1599–1608.
  13. Соболь И.М. Многомерные квадратурные формулы и функции Хаара. М., 1969.
  14. Неванлинна Р. Униформизация. М., 1955.
  15. Duren P.L. Univalent functions. N.Y., 1983.
  16. Pommerenke Ch. Boundary Behaviour of Conformal maps. N.Y., 1992.
  17. Маркушевич А.И. Теория аналитических функций. М., 1967. Т. I.
  18. Брюно А.Д. Аналитическая форма дифференциальных уравнений // Тр. Моск. мат. о-ва. 1971. V. 25. C. 119–262.
Received: 
20.03.2005
Accepted: 
28.08.2005
Published: 
30.09.2005