For citation:
Gumenuk P. A. Siegеl disks and basins of attraction for families of analytic functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2005, vol. 5, iss. 1, pp. 12-26. DOI: 10.18500/1816-9791-2005-5-1-12-26, EDN: WXACJP
Siegеl disks and basins of attraction for families of analytic functions
Let U ∋ 0 be a hyperbolic domain, α ∈ R\Q, let ∆ be a Stolz angle at λ0 = e2πα with respect to the unit disk D, and W a domain containing the point λ0. Consider an analytic family f ⋅ W × U → C ; (λ, z) ↦ fλ(z) consisting of analytic functions in the domain U with the following expansion fλ(z) = λz + α2(λ)z2 + , λ ∈ W, for small z. Let A* (0, fλ, U) be the maximal domain A ⊂ U, such that 0 ∈ A and fl (A) ⊂ A, or the set {0} if there exist no such domains. We prove, that if a sequence {λ0 ∈ W ∩ Δ} n∈N converges to λ0 and S := A* (0, fλ, U) ≠ {0}, then the sequence of the domains A* (0, fλ, U) converges to S as to the kernel. An example shows, that the analogous statement for convergence with respect to the Hausdorff metric does not hold. In the case S ⊂ U we obtain an asymptotic estimate for the size of the neighbourhood V = V (K) of the point λ0 , such that a given compact K ⊂ S lies in A* (0, fl, U) for all λ ∈ V ∩ Δ.
- Милнор Дж. Голоморфная динамика / Пер. с англ. Ижевск, 2000 (Milnor J. Dynamics in One Complex Variable. Vieweg, 2000).
- Bargmann D. Conjugations on rotation domains as limit functions of the geometric means of the iterates // Annales Academi Scientiarum Fennic. Mathematica. 1998. V. 23. P. 507–524.
- Beardon A.F. Iteration of Rational Functions. N.Y., 1991.
- Carleson L., Gamelin T.W. Complex Dynamics. N.Y., 1993.
- Еременко А.Э., Любич М.Ю. Динамика аналитических отображений // Алгебра и анализ. 1989. Т. 1, № 3. С. 1–70.
- Bergweiler W. An introduction to complex dynamics // Textos de Matematica Universidade de Coimbra. 1995. Ser. B. № 6. P. 1–37.
- Bergweiler W. Iteration of meromorphic functions // Bull. Amer. Math. Soc. 1993. V. 29, № 2. P. 151–188.
- Голузин Г.М. Геометрическая теория функций комплексного переменного. М., 1966.
- Kriete H. Approximation of indifferent cycles // Math. Gottingensis: preprint series. Gottingen, 1996. № 3.
- Бухштаб А.А. Теория чисел. М., 1966.
- Douady A. Does the Julia set depend continuously on the polynomial? // Proc. Symp. in Appl. Math. 1994. V. 49. P. 91–138.
- Kriete H. Continuity of filled-in Julia sets and the closing lemma // Nonlinearity. 1996. V. 9. P. 1599–1608.
- Соболь И.М. Многомерные квадратурные формулы и функции Хаара. М., 1969.
- Неванлинна Р. Униформизация. М., 1955.
- Duren P.L. Univalent functions. N.Y., 1983.
- Pommerenke Ch. Boundary Behaviour of Conformal maps. N.Y., 1992.
- Маркушевич А.И. Теория аналитических функций. М., 1967. Т. I.
- Брюно А.Д. Аналитическая форма дифференциальных уравнений // Тр. Моск. мат. о-ва. 1971. V. 25. C. 119–262.
- 889 reads