Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Mirsalimov V. M., Akhundova P. E. Slot of Variable Width in a Hub of Friction Pair. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 3, pp. 344-355. DOI: 10.18500/1816-9791-2016-16-3-344-355

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
14.09.2016
Full text:
(downloads: 91)
Language: 
Russian
Heading: 
UDC: 
539.375

Slot of Variable Width in a Hub of Friction Pair

Autors: 
Mirsalimov Vagif M, Azerbaijan Technical University, Baku, Azerbaijan
Akhundova Parvana E., Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
Abstract: 

Plane problem of fracture mechanics for a hub of a friction pair is studied. It is suggested that near the rough friction surface, the hub has a rectilinear slot of variable width. The slot width is comparable with elastic deformations. A criterion and a method for solving the inverse problem of mechanics of contact fracture on definition of displacement function of the hub external contour points in a friction pair with regard to the temperature drop and irregularities of the contact surface in friction pair components is given. The obtained displacement function of the external contour points of the hub provides the increase of load-bearing capacity of the friction pair hub. 

References: 
  1. Goryacheva I. G. Contact mechanics in tribology. Dordrecht, Kluwer. Acad. Publ., 1998. 346 p. DOI: https://doi.org/10.1007/978-94-015-9048-8 (Russ. ed.: Goryacheva I. G., Dobychin M. N. Kontaktnye zadachi v tribologii. Moscow, Mashinostroenie, 1988, 256 p.)
  2. Goryacheva I. G. Mehanika frikcionnogo vzaimodejstvija [Mechanics of frictional interaction]. Moscow, Nauka, 2001, 478 p. (in Russian).
  3. Gadzhiev G. H., Mirsalimov V. M. Optimal design of the composite cylinder – piston contacting pair. J. of Friction and Wear, 2004, vol. 25, no. 5, pp. 466–473.
  4. Mirsalimov V. M. Inverse problem of fracture mechanics for a compound cylinder. Mech. Solids, 2009, vol. 44, iss. 1, pp. 141–148. DOI: https://doi.org/10.3103/S0025654409010154.
  5. Mirsalimov V. M. Minimization of thermal state of contact pair bushing. Problemy Mashinostroeniya i Nadezhnosti Mashin, 2006, no. 5, pp. 88–95 (in Russian).
  6. Mirsalimov V. M. Minimization of stress state of contact pair bushing. J. of Friction and Wear, 2006, vol. 27, no. 4, pp. 388–393.
  7. Mirsalimov V. M. An inverse wear contact problem for a friction couple. J. of Machinery Manufacture and Reliability, 2008, vol. 37, iss. 1, pp. 53–59. DOI: https://doi.org/10.1007/s12001-008-1011-2.
  8. Mirsalimov V. M. Inverse problem of fracture mechanics for a disk fitted onto a rotating shaft. J. of Applied Mech. and Technical Physics, 2009, vol. 50, iss. 4, pp. 712–719. DOI: https://doi.org/10.1007/s10808-009-0097-8.
  9. Mirsalimov V. M., Veliyev F. E. Inverse problem of failure mechanics for a drawing die strengthened with a holder. Acta Polytechnica Hungarica, 2013, vol. 10, no. 1, pp. 121–138. DOI: https://doi.org/10.12700/APH.10.01.2013.1.7.
  10. Gadzhiev G. H., Mirsalimov V. M. Minimizing wear of the internal surface of a split cylinder sleeve in a contact pair. J. of Friction and Wear, 2004, vol. 25, no. 3, pp. 231–237.
  11. Mirsalimov V. M., Akhundova P. E. Minimization of contact pressure for hub–shaft friction pair. J. of Friction and Wear, 2015, vol. 36, iss. 5, pp. 404– 408. DOI: https://doi.org/10.3103/S1068366615050116.
  12. Muskhelishvili N. I. Some Basic Problem of Mathematical Theory of Elasticity. Amsterdam, Kluwer, 1977, 732 p.
  13. Parkus H. Instationare W ¨ armespannungen ¨ . Wien, Springer-Verlag, 1959, 168 p. DOI: https://doi.org/10.1007/978-3-7091-5710-7.
  14. Panasyuk V. V., Savruk M. P., Datsyshyn A. P. Raspredelenie naprjazhenij okolo treshhin v plastinah i obolochkah [The stress distribution around cracks in plates and shells]. Kiev, Naukova Dumka, 1976, 443 p. (in Russian)
  15. Mirsalimov V. M. Neodnomernye uprugoplasticheskie zadachi [Non-one-dimensional elastoplastic problems]. Moscow, Nauka, 1987, 256 p. (in Russian).
  16. Ladopoulos E. G. Singular integral equations: Linear and non-linear theory and its Applications in Science and Engineering. Berlin, Springer-Verlag, 2000, 556 p. DOI: https://doi.org/10.1007/978-3-662-04291-5.
  17. Thomas T. R. Rough surface. London, Longman, 1982, 261 p.
  18. Bhushan B. Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribology Letters, 1998, vol. 4, iss. 1, pp. 1–35. DOI: https://doi.org/10.1023/A:1019186601445.
  19. Carbone G., Bottiglione F. Contact mechanics of rough surfaces : a comparison between theories. Meccanica, 2011, vol. 46, iss. 3, pp. 557–565. DOI: https://doi.org/10.1007/s11012-010-9315-y.
  20. Czifra A., Horvath S. Complex microtopography analysis in sliding friction of steel-ferodo material pair. Meccanica, 2011, vol. 46, iss. 3, pp. 609–616. DOI: https://doi.org/10.1007/s11012-010-9422-9.
  21. Mirsalimov V. M. Simulation of bridged crack closure in a contact pair bushing. Mechanics of Solids. 2009, vol. 44, iss. 2, pp. 232–243. DOI: https://doi.org/10.3103/S0025654409020083.