Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Krylova E. Y., Baryshev D. A., Tribis I. A., Andreichenko D. K., Papkova I. V. Statics and dynamics of an electrically driven mesh nanoplate. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2025, vol. 25, iss. 3, pp. 366-379. DOI: 10.18500/1816-9791-2025-25-3-366-379, EDN: HSKMLC

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
29.08.2025
Full text:
(downloads: 730)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.3
EDN: 
HSKMLC

Statics and dynamics of an electrically driven mesh nanoplate

Autors: 
Krylova Ekaterina Yu., Saratov State University
Baryshev Dmitriy A., Saratov State University
Tribis Inna Aleksandrovna, Saratov State University
Andreichenko Dmitry Konstantinovich, Saratov State University
Papkova Irina V., Saratov State University
Abstract: 

The study object is a flexible plate of a mesh structure with an electrical drive with clamped edges. A source of electromotive force is connected to the gate and the plate. The gate is located at some distance below the plate. The volumetric ponderomotive forces of the electric field acting on the plate are modeled by the Coulomb force. The motion equations of a geometrically nonlinear plate, boundary, and initial conditions are obtained from the Ostrogradsky – Hamilton variational principle based on Kirchhoff's hypotheses. An isotropic, homogeneous material is considered. Scale effects are taken into account using modified couple stress theory. It is assumed that the fields of displacement and rotation are not independent. Geometric nonlinearity is taken into account according to the theory of T. von Karman. The mesh structure of the plate was modeled using the continuum theory of G. I. Pshenichny, which made it possible to replace the regular system of ribs with a continuous layer. The system of partial differential equations describing the nonlinear vibrations of the mesh plate under consideration was reduced to a system of ordinary differential equations using the finite difference method of second-order accuracy. The Cauchy problem was solved by the Runge – Kutta method of fourth-order accuracy. The mathematical model, solution algorithm, and software package were verified by comparing the calculation results with a full-scale experiment. An analysis of the static instability depending on the mesh geometry was carried out, as well as an analysis of the appearance of instability zones depending on the amplitude and frequency of the electrical voltage dynamic part.

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 22-21-00331, https://rscf.ru/project/22-21-00331/).
References: 
  1. Nazaria A., Faezb R., Shamlooa H. Modeling comparison of graphene nanoribbon field effect transistors with single vacancy defect. Superlattices and Microstructures, 2016, vol. 97, pp. 28-45. DOI: https://doi.org/10.1016/j.spmi.2016.06.008
  2. Wong K. L., Chuan M. W., Hamzah A., Rusli S., Alias N. E., Sultan S. M., Lim C. S., Tan M. L. P. Performance metrics of current transport in pristine graphene nanoribbon field-effect transistors using recursive non-equilibrium Green’s function approach. Superlattices and Microstructures, 2020, vol. 145, art. 106624. DOI: https://doi.org/10.1016/j.spmi.2020.106624
  3. Chuan M. W., Riyadi M. A., Hamzah A., Alias N. E., Sultan S. M., Lim C. S., Tan M. L. P. Impact of phonon scattering mechanisms on the performance of silicene nanoribbon field-effect transistors. Results in Physics, 2021, vol. 29, art. 104714. DOI: https://doi.org/10.1016/j.rinp.2021.104714
  4. Liu Y., Li C., Shi X., Wu Z., Fan S., Wan Z., Han S. High-sensitivity graphene MOEMS resonant pressure sensor. ACS Applied Materials & Interfaces, 2023, vol. 15, iss. 25, pp. 30479–30485. DOI: https://doi.org/10.1021/acsami.3c04520
  5. Chen Y., Liu S., Hong G., Zou M., Liu B., Luo J., Wang Y. Nano-optomechanical resonators for sensitive pressure sensing. ACS Applied Materials & Interfaces, 2022, vol. 14, iss. 34, pp. 39211-39219. DOI: https://doi.org/10.1021/acsami.2c09865
  6. Shin D. H., Kim H., Kim S. H., Cheong H., Steeneken P. G., Joo C., Lee S. W. Graphene nanoelectromechanical mass sensor with high resolution at room temperature. iScience, 2023, vol. 26, iss. 2, art. 105958. DOI: https://doi.org/10.1016/j.isci.2023.105958
  7. Han G. R., Jiang J. W. Edge-mode–based graphene nanomechanical resonators for high-sensitivity mass sensor. Europhysics Letters, 2018, vol. 123, iss. 3, art. 36002. DOI: https://doi.org/10.1209/0295-5075/123/36002
  8. Eremeev V. A., Zubov L. M. Mekhanika uprugikh obolochek [Mechanics of elastic shells]. Moscow, Nauka, 2008. 286 p. (in Russian).
  9. Altenbach H., Eremeyev V. A. On the linear theory of micropolar plates. ZAMM – Journal of Applied Mathematics and Mechanics, 2009, vol. 89, iss. 4, pp. 242–256. DOI: https://doi.org/10.1002/zamm.200800207
  10. Norouzzadeh A., Ansari R., Darvizeh M. Isogeometric dynamic analysis of shells based on the nonlinear micropolar theory. International Journal of Non-Linear Mechanics, 2021, vol. 135, art. 103750. DOI: https://doi.org/10.1016/j.ijnonlinmec.2021.103750
  11. Carrera E., Zozulya V. V. Carrera unified formulation (CUF) for the micropolar plates and shells. I. Higher order theory. Mechanics of Advanced Materials and Structures, 2022, vol. 29, iss. 6, pp. 773–795. DOI: https://doi.org/10.1080/15376494.2020.1793241
  12. Sargsyan A., Sargsyan S. Geometrically nonlinear models of static deformation of micropolar elastic thin plates and shallow shells. ZAMM – Journal of Applied Mathematics and Mechanics, 2021, vol. 101, iss. 5, art. e202000148. DOI: https://doi.org/10.1002/zamm.202000148
  13. Zubov L. M., Kolesnikov A. M., Rudenko O. V. Exact solutions of nonlinear micropolar elastic theory for compressible solids. In: Altenbach H., Chróścielewski J., Eremeyev V., Wiśniewski K. (eds.) Recent Developments in the Theory of Shells. Advanced Structured Materials, vol. 110. Springer, Cham, 2019, pp. 771–798. DOI: https://doi.org/10.1007/978-3-030-17747-8_37
  14. Varygina M. Numerical modeling of elastic waves in micropolar plates and shells taking into account inertial characteristics. Continuum Mechanics and Thermodynamics, 2020, vol. 32, iss. 3, pp. 761-774. DOI: https://doi.org/10.1007/s00161-018-0725-8
  15. Krylova E. Y., Papkova I. V., Krysko V. A. Mathematical modeling of complex oscillations of f lexible micropolar mesh cylindrical panels. Russian Physics Journal, 2019, vol. 62, iss. 9, pp. 1649-1655. DOI: https://doi.org/10.1007/s11182-020-01887-x, EDN: SSIMGX
  16. Krysko V. A. Jr., Awrejcewicz J., Papkova I. V., Krysko V. A. Chaotic vibrations of size-dependent f lexible rectangular plates. Chaos, 2021, vol. 31, iss. 4, art. 043119. DOI: https://doi.org/10.1063/5.0044630
  17. Mazur O., Kurpa L., Awrejcewicz J. Vibrations and buckling of orthotropic small-scale plates with complex shape based on modified couple stress theory. ZAMM – Journal of Applied Mathematics and Mechanics, 2020, vol. 100, iss. 11, art. e202000009. DOI: https://doi.org/10.1002/zamm.202000009
  18. Sargsyan S. H. Discrete-continuous and continuous-moment models of graphene under in-plane deformation. Physical Mesomechanics, 2020, vol. 23, iss. 4, pp. 309–315. DOI: https://doi.org/10.1134/S1029959920040049, EDN: GTOCWT
  19. Sargsyan S. H., Farmanyan A. J. Termouprugost’ mikropolyarnykh ortotropnykh tonkikh obolochek. PNRPU Mechanics Bulletin, 2013, iss. 3, pp. 222–237 (in Russian). DOI: https://doi.org/10.15593/perm.mech/2013.3.222-237, EDN: RDKNJH
  20. Partap G., Chugh N. Thermoelastic damping in microstretch thermoelastic rectangular plate. Microsystem Technologies, 2017, vol. 23, iss. 12, pp. 5875–5886. DOI: https://doi.org/10.1007/s00542-017-3350-8
  21. Ghayesh M. H., Farokhi H. Nonlinear behaviour of electrically actuated microplate-based MEMS resonators. Mechanical Systems and Signal Processing, 2018, vol. 109, pp. 220–234. DOI: https://doi.org/10.1016/j.ymssp.2017.11.043
  22. Saghir S., Younis M. I. An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation. Acta Mechanica, 2018, vol. 229, iss. 7, pp. 2909–2922. DOI: https://doi.org/10.1007/s00707-018-2141-3
  23. Lukin A. V., Popov I. A., Skubov D. Yu. Nonlinear dynamics and stability of microsystems engineering elements. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, iss. 6, pp. 1107–1115 (in Russian). DOI: https://doi.org/10.17586/2226-1494-2017-17-6-1107-1115
  24. Karami M., Kazemi A., Vatankhah R., Khosravifard A. Adaptive fractional-order backstepping sliding mode controller design for an electrostatically actuated size-dependent microplate. Journal of Vibration and Control, 2020, vol. 27, iss. 11–12, pp. 1353–1369. DOI: https://doi.org/10.1177/1077546320940916
  25. Karimipour I., Beni Y. T., Akbarzadeh A. H. Size-dependent nonlinear forced vibration and dynamic stability of electrically actuated micro-plates. Communications in Nonlinear Science and Numerical Simulation, 2019, vol. 78, art. 104856. DOI: https://doi.org/10.1016/j.cnsns.2019.104856
  26. Karimipour I., Beni Y. T., Zeighampour H. Vibration and dynamic behavior of electrostatic size-dependent micro-plates. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, vol. 42, art. 407. DOI: https://doi.org/10.1007/s40430-020-02490-4
  27. Sajadi B., Alijani F., Goosen H., van Keulen F. Effect of pressure on nonlinear dynamics and instability of electrically actuated circular micro-plates. Nonlinear Dynamics, 2018, vol. 91, pp. 2157-2170. DOI: https://doi.org/10.1007/s11071-017-4007-y
  28. Farokhi H., Ghayesh M. H. Nonlinear mechanics of electrically actuated microplates. International Journal of Engineering Science, 2018, vol. 123, pp. 197–213. DOI: https://doi.org/10.1016/j.ijengsci.2017.08.017
  29. dell’Isola F., Steigman D. A two-dimensional gradient-elasticity theory for woven fabrics. Journal of Elasticity, 2015, vol. 118, iss. 1, pp. 113–125. DOI: https://doi.org/10.1007/s10659-014-9478-1
  30. Eremeyev V. A. A nonlinear model of a mesh shell. Mechanics of Solids, 2018, vol. 53, iss. 4, pp. 464–469. DOI: https://doi.org/10.3103/S002565441804012
  31. Krylova E. Y., Papkova I. V., Saltykova O. A., Krysko V. A. Features of complex vibrations of flexible micropolar mesh panels. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 1, pp. 48–59 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2021-21-1-48-59, EDN: MYYGLY
  32. Krylova E. Y., Papkova I. V., Yakovleva T. V., Krysko V. A. Theory of vibrations of carbon nanotubes like flexible micropolar mesh cylindrical shells taking into account shift. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2019, vol. 19, iss. 3, pp. 305–316 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2019-19-3-305-316, EDN: PFEDII
  33. Kármán Th. V. Festigkeitsprobleme im Maschinenbau. In: Klein F., Müller C. (eds.) Mechanik. Vieweg+Teubner Verlag, Wiesbaden, 1907, pp. 311–385. DOI: https://doi.org/10.1007/978-3-663-16028-1_5
  34. Yang F., Chong A. C. M., Lam D. C. C., Tong P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002, vol. 39, iss. 10, pp. 2731–2743. DOI: https://doi.org/10.1016/S0020-7683(02)00152-X
  35. Pshenichnov G. I. Teoriya tonkikh uprugikh setchatykh obolochek i plastinok [Theory of thin elastic mesh shells and plates]. Moscow, Nauka, 1982. 352 p. (in Russian).
  36. Hamilton W. R. On conjugate functions, or algebraic couples. Report of the Fourth Meeting of the British Association for the Advancement of Science. London, J. Murray, 1835. Vol. 4, pp. 519–523.
  37. Krysko V. A., Awrejcewicz J., Komarov S. A. Nonlinear deformations of spherical panels subjected to transversal load action. Computer Methods in Applied Mechanics and Engineering, 2005, vol. 194, iss. 27–29, pp. 3108 3126. DOI: https://doi.org/10.1016/j.cma.2004.08.005
  38. Français O., Dufour I. Normalized abacus for the global behavior of diaphragm: Pneumatic, electrostatic, piezoelectric or electromagnetic actuation. Journal of Modeling and Simulation of Microsystems, 1999, vol. 1, iss. 2, pp. 149–160.
Received: 
13.11.2023
Accepted: 
11.12.2024
Published: 
29.08.2025