Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Ivanov D. V., Bessonov L. V., Kirillova I. V., Kossovich L. Y., Kireev S. I. The concept of medical decision support systems in surgery of the spinal pelvic complex. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 4, pp. 517-535. DOI: 10.18500/1816-9791-2022-22-4-517-535, EDN: IJEHPA

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 418)
Article type: 

The concept of medical decision support systems in surgery of the spinal pelvic complex

Ivanov Dmitrii V., Saratov State University
Bessonov Leonid Valentinovich, Saratov State University
Kirillova Irina V., Saratov State University
Kossovich Leonid Yurevich, Saratov State University
Kireev Sergey I., Saratov State University

Russian clinical guidelines for the treatment of diseases and injuries of the musculo-skeletal system contain references to the need for careful preoperative planning. In Russian medical organizations, as a rule, the traditional approach to preoperative planning is used, which implies the use of acetate implant templates along with X-ray films. At the same time, representatives of the leading clinics of trauma and orthopedic profile in Russia are of the opinion that digital preoperative planning is a high-precision method for selecting the size of implants, as well as other parameters required for their installation. It is believed that preoperative digital planning and virtual placement of implant templates should be integrated into the preoperative management of implantation patients as a standard procedure. A survey of experts, traumatologists and orthopedists, showed the need for the introduction of computer systems for preoperative planning, which also provide biomechanical support for the decision made and predict treatment results. In this regard, the concept of support systems for making medical decisions in surgery of the spine-pelvic complex has been developed, which lies at the core of the program platform Aссord, which is the basis for the development of preoperative planning systems in surgery of the spine-pelvic complex and large joints. This paper presents the results of the development of the concept, as well as its approbation. The concept developed and presented in this article also opens up opportunities for creating systems to support medical decision-making in other areas of surgery on its basis.

The study was carried out with the financial support of the Russian Foundation for Advanced Research.
  1. Tikhilov R. M., Shubnyakov I. I. (eds.) Rukovodstvo po khirurgii tazobedrennogo sustava [Guidelines for Hip Surgery]. Vol. 2. St. Petersburg, RSRI of TO n.a. R. R. Vreden Publ., 2015. 355 p. (in Russian). EDN: WIOZMD
  2. Zawojska K., Wnuk-Scardaccione A., Bilski J., Nitecka E. Correlation of body mass index with pelvis and lumbar spine alignment in sagittal plane in hemophilia patients. Medicina (Kaunas), 2019, vol. 55, iss. 10, pp. 627. https://doi.org/10.3390/medicina55100627
  3. Ryabykh S. O., Ulrikh E. V., Mushkin A. Yu., Gubin A. V. Treatment of congenital spinal deformities in children: Yesterday, today, tomorrow. Hirurgia pozvonocnika [Spine Surgery], 2020, vol. 17, iss. 1, pp. 15–24 (in Russian). http://dx.doi.org/10.14531/ss2020.1.15-24
  4. Ames C. P., Smith J. S., Scheer J. K., Bess S., Bederman S.S, Deviren V., Lafage V., Schwab F., Shaffrey C. I. Impact of spinopelvic alignment on decision making in deformity surgery in adults: A review. Journal of Neurosurgery: Spine, 2012, vol. 16, iss, 6, pp. 547–564. https://doi.org/10.3171/2012.2.SPINE11320
  5. Wang B., Ke W., Hua W., Zeng X., Yang C. Biomechanical evaluation and the assisted 3D printed model in the patient-specific preoperative planning for thoracic spinal tuberculosis: A finite element analysis. Frontiers in Bioengineering and Biotechnology, 2020, iss. 8, pp. 807. https://doi.org/10.3389/fbioe.2020.00807
  6. Wolanski W., Gzik-Zroska B., Kawlewska E., Gzik M., Larysz D., Dzielicki J., Rudnik A. Preoperative planning of surgical treatment with the use of 3D visualization and finite element method. Lecture Notes in Computational Vision and Biomechanics, 2015, vol. 19, pp. 139–163. https://doi.org/10.1007/978-3-319-13407-9_9
  7. Cao P., Hao W., Zhang L., Zhang Q., Liu X., Li M. Safety and efficacy studies of vertebroplasty with dual injections for the treatment of osteoporotic vertebral compression fractures: Preliminary report. Academic Radiology, 2020, vol. 27, iss. 8, pp. e224–e231. https://doi.org/10.1016/j.acra.2019.09.023
  8. Cook C. E., Learman K. E., O’Halloran B. J., Showalter C. R., Kabbaz V. J., Goode A. P., Wright A. A. Which prognostic factors for low back pain are generic predictors of outcome across a range of recovery domains? Physical Therapy, 2013, vol. 93, iss. 1, pp. 32–40. https://doi.org/10.2522/ptj.20120216
  9. Cheng L., Cai H., Yu Y., Li W., Li Q., Liu Z. Modified full-endoscopic interlaminar discectomy via an inferior endplate approach for lumbar disc herniation: retrospective 3-year results from 321 patients. World Neurosurg, 2020, vol. 141, pp. e537–e544. https://doi.org/10.1016/j.wneu.2019.10.034
  10. Fairbank J. C., Pynsent P. B. The oswestry disability index. Spine, 2000, vol. 25, iss. 22, pp. 2940–2952. https://doi.org/10.1097/00007632-200011150-00017
  11. Fedonnikov A. S., Kolesnikova A. S., Rozhkova Yu. Yu, Kirillova I. V., Kovtun A. L., Kossovich L. Yu. Analysis of the needs of medical specialists in the design of medical decision support systems for traumatology and orthopedics. In: Technological Innovations in Traumatology, Orthopedics and Neurosurgery: Integration of Science and Practice. Saratov, Amirit, 2019, pp. 286–288 (in Russian). EDN: CEJKPV
  12. Kolesnikova A. S., Fedonnikov A. S., Kirillova I. V., Ulianov V. Iu., Levchenko K. K., Kireev S. I., Kossovich L. Iu., Norkin I. A. The possibilities with decision support systems in surgery of spine-pelvic complex (analytical review). Genij Ortopedii [Genius of Orthopedics], 2019, vol. 25, iss. 2, pp. 243–253 (in Russian). https://doi.org/10.18019/1028-4427-2019-25-2-243-253
  13. Shin J. K., Lim B. Y., Goh T. S., Son S. M., Kim H. S., Lee J. S., Lee C. S. Effect of the screw type (S2-alar-iliac and iliac), screw length, and screw head angle on the risk of screw and adjacent bone failures after a spinopelvic fixation technique: A finite element analysis. PLoS One, 2018, vol. 13, iss. 8, pp. 296–301. https://doi.org/10.1371/journal.pone.0201801
  14. Jia Y. W., Cheng L. M., Yu G. R., Du C. F., Yang Z. Y., Yu Y., Ding Z. Q. A finite element analysis of the pelvic reconstruction using fibular transplantation fixed with four different rod-screw systems after type I resection. Chinese Medical Journal, 2008, vol. 121, iss. 4, pp. 321–326. http://dx.doi.org/10.1097/00029330-200802020-00008
  15. Dol A. V., Dol E. S., Ivanov D. V. Biomechanical modelling of surgical reconstructive treatment of spinal spondylolisthesis at L4–L5 level. Russian Journal of Biomechanics, 2018, vol. 22, iss. 1, pp. 31–44 (in Russian). https://doi.org/10.15593/RZhBiomeh/2018.1.00, EDN: YMCSSL
  16. Wu W., Han Z., Hu B., Du C., Xing Z., Zhang C., Gao J., Shan B., Chen C. A graphical guide for constructing a finite element model of the cervical spine with digital orthopedic software. Annals of Translational Medicine, 2021, vol. 9, iss. 2. https://doi.org/10.21037/atm-20-2451  
  17. Pitkanen M. T., Manninen H. I., Lindgren K. A., Sihvonen T. A., Airaksinen O., Soimakallio S. Segmental lumbar spine instability at flexion-extension radiography can be predicted by conventional radiography. Clinical Radiology, 2002, vol. 57, iss. 7, pp. 632–639. https://doi.org/10.1053/crad.2001.0899
  18. Baykov E. S. Predicting the Results of Surgical Treatment of Herniated Lumbar Intervertebral Discs. Diss. Cand. Sci. (Med.). Novosibirsk, 2014. 135 p. (in Russian).
  19. Krut’ko A. V., Peleganchuk A. V., Kozlov D. M., Gladkov A. V., Ahmetyanov Sh. A. The correlation dependence of the clinical and morphological manifestations and biomechanical parameters in patients with degenerative spondylolisthesis l4 vertebra. Traumatology and Orthopedics of Russia, 2011, iss. 4 (62), pp. 44–52 (in Russian). EDN: OXYZVR
  20. Baikov E. S., Rusova T. V., Krutko A. V., Baikalov A. A. Relationship between biochemical parameters of the spinal motion segment and outcome of surgery for herniated lumbar intervertebral disc. Hirurgia Pozvonocnika (Spine Surgery), 2013, iss. 2, pp. 43–49 (in Russian). https://doi.org/10.14531/ss2013.2.43-49, EDN: QASRWB
  21. Khvisyuk N. I., Prodan A. I., Volkov E. V. Predicting the results of surgical treatment of radicular syndromes in hernias and massive protrusions of the intervertebral discs. Ortopediia, travmatologiia i protezirovanie [Orthopedics, Traumatology and Prosthetics], 1985, iss. 5, pp. 34–38 (in Russian).
  22. Than K. D., Park P., Fu K. M., Nguyen S., Wang M. Y., Chou D., Nunley P. D., Anand N., Fessler R. G., Shaffrey C. I., Bess S., Akbarnia B. A., Deviren V., Uribe J. S., La Marca F., Kanter A. S., Okonkwo D. O., Mundis G. M., Mummaneni P. V. Clinical and radiographic parameters associated with best versus worst clinical outcomes in minimally invasive spinal deformity surgery. Journal of Neurosurgery: Spine, 2016, vol. 25, iss. 1, pp. 21–25. https://doi.org/10.3171/2015.12.SPINE15999
  23. Solberg T., Johnsen L. G., Nygaard Ø. P., Grotle M. Can we define success criteria for lumbar disc surgery? Acta Orthopaedica, 2013, vol. 84, iss. 2, pp. 196–201. https://doi.org/10.3109/17453674.2013.786634
  24. Werner D. A. T., Grotle M., Gulati S., Austevoll I. M., Lønne G., Nygaard Ø. P., Solberg T. K. Criteria for failure and worsening after surgery for lumbar disc herniation: a multicenter observational study based on data from the Norwegian Registry for Spine Surgery. European Spine Journal, 2017, vol. 26, pp. 2650–2659. https://doi.org/10.1007/s00586-017-5185-5
  25. Ivanov D. V., Kirillova I. V., Kossovich L. Yu., Likhachev S. V., Polienko A. V., Kharlamov A. V., Shulga A. E. Comparative analysis of the SpinoMeter mobile application and Surgimap system for measuring the sagittal balance parameters: inter-observer reliability test. Genij Ortopedii, 2021, vol. 27, no. 1, pp. 74–79. https://doi.org/10.18019/1028-4427-2021-27-1-74-79
  26. Bessonov L. V., Golyadkina A. A., Dmitriev P. O., Dol A. V., Zolotov V. S., Ivanov D. V., Kirillova I. V., Kossovich L. Yu., Titova Yu. I., Ulyanov V. Yu., Kharlamov A. V. Constructing the dependence between the Young’s modulus value and the Hounsfield units of spongy tissue of human femoral heads. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 2, pp. 182–193. https://doi.org/10.18500/1816-9791-2021-21-2-182-193
  27. Beskrovny A. S., Bessonov L. V., Golyadkina A. A., Dol A. V., Ivanov D. V., Kirillova I. V., Kossovich L. Yu., Sidorenko D. A. Development of a decision support system in traumatology and orthopedics. Biomechanics as a tool for preoperative planning. Russian Journal of Biomechanics, 2021, vol. 25, iss. 2, pp. 118–133 (in Russian). https://doi.org/10.15593/RZhBiomeh/2021.2.01, EDN: IEGOHC
  28. Beskrovny A. S., Bessonov L. V., Ivanov D. V., Zolotov V. S., Sidorenko D. A., Kirillova I. V., Kossovich L. Yu. Construction of 3D solid vertebral models using convolutional neural networks. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 3, pp. 368–378 (in Russian). https://doi.org/10.18500/1816-9791-2021-21-3-368-378
  29. Su Y.-S, Ren D., Wang P. C. Comparison of biomechanical properties of single- and two-segment fusion for Denis type B spinal fractures. Orthopaedic Surgery, 2013, vol. 5, iss. 4, pp. 266–273. https://doi.org/10.1111/os.12068
  30. Rohlmann A., Zander T., Rao M., Bergmann G. Applying a follower load delivers realistic results for simulating standing. Journal of Biomechanics, 2009, vol. 42, iss. 10, pp. 1520–1526. https://doi.org/10.1016/j.jbiomech.2009.03.048
  31. Rohlmann A., Zander T., Rao M., Bergmann G. Realistic loading conditions for upper body bending. Journal of Biomechanics, 2009, vol. 42, iss. 7, pp. 884–890. https://doi.org/10.1016/j.jbiomech.2009.01.017
  32. Zahari S. N., Latif M. J. A., Rahim N. R. A., Kadir M. R. A., Kamarul T. The effects of physiological biomechanical loading on intradiscal pressure and annulus stress in lumbar spine: a finite element analysis. Journal of Healthcare Engineering, 2017, vol. 2017, Art. 9618940. 8 p. https://doi.org/10.1155/2017/9618940
  33. Kim Y. H., Khuyagbaatar B., Kim K. Recent advances in finite element modeling of the human cervical spine. Journal of Mechanical Science and Technology, 2018, vol. 32, pp. 1–10. https://doi.org/10.1007/s12206-017-1201-2
  34. Xu M., Yang J., Lieberman I. H., Haddas R. Lumbar spine finite element model for healthy subjects: development and validation. Computer Methods in Biomedical Engineering, 2017, vol. 20, iss. 1, pp. 1–15. https://doi.org/10.1080/10255842.2016.1193596
  35. Dreischarf M., Rohlmann A., Bergmann G., Zander T. Optimised loads for the simulation of axial rotation in the lumbar spine. Journal of Biomechanics, 2011, vol. 44, iss. 12, pp. 2323–2327. https://doi.org/10.1016/j.jbiomech.2011.05.040
  36. Yagudina R. I., Litvinenko M. M., Sorokovikov I. V. Patients registry: Structure, functions, opp ortunities of app liance. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology, 2011, vol. 4, iss. 4, pp. 3–7 (in Russian). EDN: OISBOT
  37. Gliklich R., Dreyer N., Leavy M. (eds.) Registries for Evaluating Patient Outcomes: A User’s Guide. Third edition. Two volumes. (Prepared by the Outcome DEcIDE Center [Outcome Sciences, Inc., a Quintiles company] under Contract No. 290 2005 00351 TO7). AHRQ Publication No. 13(14)-EHC111. Rockville, MD: Agency for Healthcare Research and Quality. April 2014 (http://www.effectivehealthcare.ahrq.gov/registries-guide-3.cfm).
  38. Spine Tango Overview. Available at: https://www.eurospine.org/spine-tango.htm (accessed 30 October 2018).
  39. Swedish Society of Spinal Surgeons. Available at: http://www.4s.nu/4s_eng/index.htm (accessed 29 October 2018).
  40. DICOM. Digital imaging and communication in medicine. Available at: https://www.dicomstandard.org/ (accessed 27 October 2019).
  41. Kuleshov A. A., Vetrile M. S., Lisyansky I. N., Makarov S. N., Sokolova T. V. Surgical treatment of a patient with congenital deformity of the spine, the thoracic and lumbar pedicle aplasia, and spinal compression syndrome. Hirurgia pozvonocnika [Spine Surgery], 2016, vol. 13, iss. 3, pp. 41–48 (in Russian). https://doi.org/10.14531/ss2016.3.41-48
  42. Beskrovny A. S., Bessonov L. V., Ivanov D. V., Kirillova I. V., Kossovich L. Yu. Using the mask-RCNN convolutional neural network to automate the construction of two-dimensional solid vertebral models. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, vol. 20, iss. 4, pp. 502–516 (in Russian). https://doi.org/10.18500/1816-9791-2020-20-4-502-516
  43. Sekuboyina A., Bayat A., Husseini M. E., Loffler M., Rempfler M., Kukacka J., Tetteh G., Valentinitsch A., Payer C., Urschler M., Chen M., Cheng D., Lessmann N., Hu Y., Wang T., Yang D., Xu D., Ambellan F., Zachow S., Jiang T., Ma X., Angerman Ch, Wang X., Wei Q., Brown K., Wolf M., Kirszenberg A., Puybareauq E, Menze B. H., Kirschke J. VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images. Medical Image Analysis, 2021, vol. 73, Art. 102166. https://doi.org/10.1016/j.media.2021.102166
  44. Quagliarella L., Boccaccio A., Lamberti L., Sasanelli N. Biomechanical effects of prosthesis neck geometries to contrast limb lengthening after hip replacement. Journal of Applied Biomaterials & Biomechanics, 2006, vol. 4, iss. 1, pp. 45–54. https://doi.org/10.5301/JABB.2008.2488
  45. Widmer K.-H, Majewski M. The impact of the CCD-angle on range of motion and cup positioning in total hip arthroplasty. Clinical Biomechanics, 2005, vol. 20, pp. 723–728. https://doi.org/10.1016/j.clinbiomech.2005.04.003
  46. Brandolini N. Experimental methods for the biomechanical investigation of the human spine: a review. Journal of Mechanics in Medicine and Biology, 2014, vol. 14, iss. 1, Art. 1430002. https://doi.org/10.1142/S0219519414300026
  47. Dreischarf M. Biomechanics of the L5–S1 motion segment after total disc replacement — Influence of iatrogenic distraction, implant positioning and preoperative disc height on the range of motion and loading of facet joints. Journal of Biomechanics, 2015, vol. 48, iss. 12, pp. 3283–3291. https://doi.org/10.1016/j.jbiomech.2015.06.023
  48. Dreischarf M. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. Journal of Biomechanics, 2014, vol. 47, iss. 8, pp. 1757–1766. https://doi.org/10.1016/j.jbiomech. 2014.04.002
  49. Hubner A. R. Numerical analysis of multi-level versus short instrumentation for the treatment of thoracolumbar fractures. European Journal of Orthopaedic Surgery & Traumatology, 2015, vol. 25, Suppl. 1, pp. 213–217. https://doi.org/10.1007/s00590-015-1612-7
  50. Aalto T., Sinikallio S., Kroger H., Viinamaki H., Herno A., Leinonen V., Turunen V., Savolainen S., Airaksinen O. Preoperative predictors for good postoperative satisfaction and functional outcome in lumbar spinal stenosis surgery — a prospective observational study with a two-year follow-up. Scandinavian Journal of Surgery, 2012, vol. 101, iss. 4, pp. 255–260. https://doi.org/10.1177/145749691210100406
  51. Katz J. N., Stucki G., Lipson S. J., Fossel A. H., Grobler L. J., Weinstein J. N. Predictors of surgical outcome in degenerative lumbar spinal stenosis. Spine, 1999, vol. 24, iss. 21, pp. 2229–2233. https://doi.org/10.1097/00007632-199911010-00010
  52. Fedonnikov A. S. Improving the Management of Medical Rehabilitation of Patients with Pathology of the Musculoskeletal System. Diss. Dr. Sci. (Med.). Saratov, 2020. 433 p. (in Russian).