Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Baryshev A. A. The equilibrium equations of shells in the coordinates of the general form. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 2, pp. 44-53. DOI: 10.18500/1816-9791-2013-13-2-1-44-53

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 93)

The equilibrium equations of shells in the coordinates of the general form

Baryshev Andrei Alekseevich, Saratov State University

A mathematical model of homogeneous elastic shells is consider under kinematics Reissner–Mindlin type. Through direct (coordinateless) methods of the tensor calculus equations of equilibrium are obtained in terms of displacements in an arbitrary (not necessarily orthogonal) coordinate system, taking into account the asymmetry of the location of the front surface. For a spherical shells proposed procedure for constructing solutions, based on the method of spectral decomposition, which describes the stress-strain state at the potential power and torque static loads. 

  1. Altenbach H., Eremeyev V. A., Morozov N. F. Linear theory of shells taking into account surface stresses. Doklady Physics, 2009, vol. 54, no. 12, pp. 531–535.
  2. Shen H. S. Functionally graded materials : nonlinear analysis of plates and shells. CRC Press, 2009, 280 p.
  3. Lychev S. A., Lycheva T. N., Manzhirov A. V. Unsteady vibration of a growing circular plate. Mech. Solids, 2011, vol. 46, no. 2, pp. 325–333.
  4. Leissa A. W. Vibration of shells. Ohio, Acoustical Society of America, 1993. 428 p.
  5. Truesdell C., Toupin R. A. The classical field theories. Handbuch der Physik [Encyclopedia of Physics]. Vol. III/1 / ed. S. Fl¨ugge. Berlin, Springer-Verlag, 1960, pp. 226–858 (in German).
  6. Noll W. Materially uniform simple bodies with inhomogeneities. Arch. Rat. Mech. Anal., 1956, vol. 27, no. 1, pp. 1–32.
  7. Epstein M. The geometrical language of continuum mechanics. Cambridge, Cambridge University Press, 2010.
  8. Gurtin M. E., Murdoch A. I. A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal., 1975, vol. 57, no. 4, pp. 291–323.
  9. Maugin G. A. Material inhomogeneities in elasticity. London, Chapman and Hall, 1993, 280 p.
  10. Cohen H., Wang C.-C. Some equilibrium problems for compressible, anisotropic, laminated nonlinearly elastic bodies. Arch. Ration. Mech. Anal., 1992, vol. 119, no. 9, pp. 1–34.
  11. Lychev S. A., Baryshev A. A. Equilibrium equations for material uniform and inhomogeneous laminated shells. PNRPU Mechanics Bulletin. Mechanics, 2012, no. 4, pp. 42–65 (in Russian).
  12. Lurie A. I. Nelineinaia teoriia uprugosti [Nonlinear theory of elasticity]. Moscow, Nauka, 1980, 512 p. (in Russian).
  13. Gibbs J. W. Elements of vector analysis. New Haven, 1884.
  14. Eremeev V. A., Zubov L. M. Mekhanika uprugikh obolochek [Mechanics of Elastic Shells]. Moscow, Nauka, 2008. 280 p. (in Russian).
  15. Grigoliuk E. I. Selezov I. T. Neklassicheskie teorii kolebanii sterzhnei, plastin i obolochek [Non-classical theory of vibrations of rods, plates and shells]. Moscow, VINITI, 1973, 272 p. (in Russian).
  16. Pelekh B. L. Obobshchennaia teoriia obolochek [Generalized theory of shells]. L’vov, Vyshcha shkola, 1978, 159 p. (in Russian).
  17. Novozhilov V. V. Teoriia tonkikh obolochek [The theory of thin shells]. Leningrad, Sudpromgiz, 1962, 431 p.
  18. Kabrits S. A., Mikhailovskii E. I., Tovstik P. E., Chernykh K. F., Shamina V. A. Obshchaia nelineinaia teoriia uprugikh obolochek [General nonlinear theory of elastic shells]: ed. K. F. Chernyh, S. A. Kabrica. St. Petersburg, St. Petersburg Press, 2002, 388 p. (in Russian).
  19. Chapelle D., Bathe K. J. The Finite Element Analysis of Shells — Fundamentals. New York, Springer, 2011, Vol. XV, 410 p.
  20. Mikhailovskii E. I. Klassicheskaia teoriia obolochek [The classical theory of shells]. Vestnik Syktyvkarskogo universiteta. Ser. 1.: Math. Mech. Inform., 2006, no. 6, pp. 123–164 (in Russian).
  21. Lebedev L. P., Cloud M. J, Eremeyev V. A. Advanced Engineering Analysis: Calculus of Variations and Functional Analysis with Applications in Mechanics. New Jersey, World Scientific, 2012. 499 p.
  22. Zhilin P. A. Prikladnaia mekhanika. Osnovy teorii obolochek [Applied Mechanics. Foundations of the Theory of Shells]. St. Petersburg, St. Petersburg State Polytech. Univer. Press, 2006, 167 p. (in Russian).
  23. Lizarev A. D., Rostanina N. B. Kolebaniia metal- lopolimernykh i odnorodnykh sfericheskikh obolochek [Vibration in metal- and homogeneous spherical shells]. Minsk, Nauka i tekhnika, 1984, 192 p. (in Russian).
  24. Senitskii Yu. E., Lychev S. A. Dinamika trekhsloinykh sfericheskikh obolochek nesimmetrichnoi struktury [The dynamics of three-layer spherical shells asymmetric structure]. Trudy XVIII mezhdunarodnoi konferentsii po teorii obolochek i plastin. Saratov, 1997, vol. 1, pp. 47–52 (in Russian).
Short text (in English):
(downloads: 102)